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Abstract

High-altitude parking orbits could provide resiliency to the military space infras-

tructure by providing redundancy in key assets, allowing for rapid reconstitution of

underperforming satellites. When analyzing trajectories in a high-altitude regime,

two-body models of Keplerian motion become less accurate since the gravitational

effects of other bodies are no longer negligible. To provide a higher fidelity model of

the dynamics in a high-altitude regime, a multiple-body model can be used. In the

Earth-Moon system, a spacecraft operating in the high-altitude regime can be mod-

eled with three-body dynamics. With certain simplifying assumptions, the model

is called the circular-restricted three-body problem (CR3BP). The CR3BP provides

unique dynamics that could be exploited to provide beneficial trajectories unavailable

and unobservable in a lower-order model. The tradeoff for using this higher-order

model is there is no closed-form analytical solution and the dynamics are chaotic.

Methods to search for optimal trajectories within the CR3BP are analyzed to deter-

mine viability in rapid mission development. A direct orthogonal collocation pseu-

dospectral method is utilized to generate fuel- and time- optimal trajectories within

the CR3BP. These results are compared to benchmarks from two-body dynamics,

such as Hohmann transfers. Numerical approaches to finding optimal solutions are

highly dependent on initial guesses to converge on candidate optimal solutions. To

compound this issue, the chaotic dynamics in the CR3BP mean small variations in

the initial conditions could lead to wildly varying trajectories. The results from the

current research provide a methodology to establish a framework for rapid mission

development in a dynamical environment, which may be essential to maintain space

superiority and responsiveness.
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OPTIMAL TRAJECTORY GENERATION IN A DYNAMIC MULTI-BODY

ENVIRONMENT USING A PSEUDOSPECTRAL METHOD

I. Introduction

1.1 Motivation

1.1.1 Current Issues

Space is an increasingly relevant aspect of both civilian and military sectors. The

National Security Space Strategy notes that the space domain has “worldwide ser-

vices upon which the civil and commercial sectors depend” [1]. There are numerous

assets utilized by the civilian sector including the Global Positioning Satellite (GPS),

satellite television, and weather satellites. The military sector further employs the

space architecture with assets ranging from global communication to space-based in-

telligence, surveillance and reconnaissance (ISR) [11]. The United States National

Security Space Strategy notes that the space environment is becoming “increasingly

congested, contested, and competitive [1]”.

The number of satellites and amount of debris in orbit demonstrates the congested

environment. Satellites and debris are catalogued and tracked by the Department of

Defense (DoD). In 2010, the DoD tracked “approximately 22,000 man-made objects”

[1]. The vast majority of tracked objects are debris, and it is estimated that there

could be as many as “hundreds of thousands of additional pieces of debris” [1] that

cannot be tracked due to their size. Figure 1.1 shows the growth of the number

of objects cataloged by the DoD. Two major incidents led to the large collection of

debris: China’s anti-satellite (ASAT) system test and the Iridium-COSMOS colli-
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sion. China’s ASAT system test occurred on January 2007 and involved destroying a

weather satellite [12]. The ASAT system test led to approximately 3,000 new pieces

of space debris [1]. The Iridium-COSMOS collision occurred in February 2009 be-

tween the communication satellite Iridium and the non-operational Russian COSMOS

satellite [13], leading to approximately 1,500 new pieces of debris [1]. These incidents

demonstrate the congestion faced by space users and the imminent need for solutions

to dealing with the overcrowded environment.

Figure 1.1. Satellite Catalog Growth [1]

The contested environment expressed in the National Security Space Strategy is

concerned with potential adversaries threatening the “stability and security” [1] of

the space domain. In the Pentagon’s 2016 Annual Report to Congress, it is noted

that other countries are developing anti-satellite capabilities and further measures to

“prevent the use of space-based assets” [14]. As of November 2015, over 70 countries
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have operated satellites in space and there are more than 1380 operational satellites

[15]. The space domain is heavily contested and is only becoming increasingly utilized

by nations and the private sector.

Competition in space can be seen by the demand for highly desirable orbits. One of

the desirable orbits is a geostationary orbit. A satellite positioned in a geostationary

orbit will orbit the Earth at approximately the same rate as the Earth’s rotation.

The satellite then appears to be stationary from the Earth. Remaining over a single

point on Earth’s surface is advantageous because it allows for constant visibility and

communication. There is high demand for geostationary orbits and they are utilized

by both the private and public sector, demonstrating the high competitiveness of the

space domain.

The expense of space missions is another area of importance to commercial enter-

prises and nations as they try to be as cost-effective as possible. The space domain

is inherently expensive. The environment prevents maintenance and repair, so high

reliability and survivability is required of space assets, which raises costs. Launching

is also an expensive endeavor as extra mass raises the cost of launch, so additional

mass is essentially extra cost. For satellites that require orbit maintenance or ma-

neuvers, extra fuel must be brought with the satellite. Extra fuel ultimately results

in increased launch cost due to extra mass. Efficient orbit transfers and maintenance

are desirable to prevent additional costs from increasing mass.

The United State military has unique priorities and needs beyond those of a

civilian space-user. The priorities and goals of the United States military are derived

from the National Space Policy. These priorities are to increase mission “assurance

and resilience” and “ensure cost-effective survivability of space capabilities” [1]. One

method to ensure space domain mission assurance is through reconstitution [16].

Reconstitution is the process of restoring “lost or diminished space capabilities”,
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such as by “reconfiguring surviving assets” [11].

1.1.2 Benefits of the Circular-Restricted Three-Body Problem (CR3BP)

The current research looks into the unique environment of the CR3BP to address

the issues faced by civilian and military space-users from Section 1.1.1. The CR3BP

is a model that accounts for the gravitational effects of two primary bodies on a

third body. This model is generally used when the gravitational effects of the smaller

body are no longer negligible in a two-body approximation. The benefit of using

a higher order model is the accuracy of the model can be improved and unique

trajectories can be determined. However, the inclusion of a third body complicates

the dynamics preventing a closed-form, analytical solution. Instead, other methods

can be used to gain insight into the problem, such as applying simplifying assumptions

and linearizing the dynamics around equilibrium points. Motion in the CR3BP is

chaotic, meaning “small changes in the initial state” can lead to very different final

states [10]. However, this chaotic nature produces the unique dynamics that can allow

for unconventional trajectories, such as low-cost transfers.

The unique dynamics in the CR3BP could provide solutions to the problems

faced in Section 1.1.1. This environment is relatively uncongested, uncontested, and

uncompetitive since Low-Earth Orbits (LEO) is where most human space activity

occurs [17]. Other than occasional scientific missions, the equilibrium points are not

utilized by “spacefaring nations at present” [17].

This domain could provide the ideal location to hold satellites in parking orbits un-

til rapid reconstitution of degraded satellites is needed. The low-cost transfers in the

CR3BP would potentially allow a satellite to perform reconstitution in a more rapid

and cost-effective manner than a satellite launched from the ground. In addition,

the trajectories designed in the CR3BP would not be the conventional trajectories

4



from a two-body approximation, resulting in unexpected trajectories. Ultimately, the

CR3BP provides the decision-maker with more options and freedom to choose be-

tween those options. Rather than being limited to choices in the two-body domain,

the design space can be expanded to allow for unique options in the CR3BP. The

CR3BP domain can increase the space mission assurance and resilience desired by

the United States military.

Performing analysis in the CR3BP provides the benefits of the unique dynamics

associated with the CR3BP environment. To fully benefit from performing analysis

in the CR3BP domain, optimization techniques can be utilized. Generating optimal

trajectories in the CR3BP would allow for the unique dynamics and cost-saving in

this environment to be exploited.

1.2 Problem Statement

The current research investigates the efficacy of the Legendre-Gauss-Rao pseu-

dospectral method employed in General Purpose Optimal Control Software Version

II (GPOPS-II, or GPOPS) to determine viability of the pseudospectral method for

optimal low-thrust trajectory design in the CR3BP. The efficacy of the selected pseu-

dospectral method is analyzed by testing in a variety of different settings and eval-

uating the resulting optimal trajectories. The settings evaluated include: providing

different initial guesses, applying a compound objective function between minimum-

time and minimum-fuel, and searching at orbits “nearby” to the starting orbit. Test-

ing different scenarios with the pseudospectral method used within GPOPS will help

determine the robustness of the optimization method in the CR3BP.
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1.3 Thesis Overview

The current research analyzes the efficacy of a pseudospectral method in devel-

oping optimal low-thrust trajectories within the CR3BP. The CR3BP can provide

unique trajectories that could be beneficial in mission planning, such as high-altitude

parking orbits that allow for rapid reconstitution. By developing a method to analyze

optimal trajectories in the CR3BP, the unique dynamics can be exploited. By analyz-

ing the efficacy of the pseudospectral method, future work can develop a methodology

for optimal mission design within the CR3BP. The background, methodology, results,

analysis, and conclusions are organized as follows:

• Chapter 2 provides a background discussion on the fundamentals of the CR3BP

and the unique dynamics that can be exploited in the CR3BP environment; op-

timization fundamentals and a description of the pseudospectral method utilized

in the current research; and a literature review of relevant works on the topic.

• Chapter 3 describes a methodology for the research by providing the develop-

ment of a test plan to analyze the efficacy of the pseudospectral method, a

discussion of the problem set-up, a demonstration of the generation of an initial

guess, and a development of a comparison metric to the Two-Body Problem

(2BP).

• Chapter 4 implements the test plan and evaluates the results. The test plan eval-

uates and analyzes the following test scenarios: trying different initial guesses,

applying a compound objective function between minimum-time and minimum-

fuel, and searching at orbits “nearby” to the starting orbit. An evaluation of

the resulting trajectories will also be discussed.

• Chapter 5 provides a brief summary of the main conclusions reached in the

current research and recommendations for future work will be suggested.
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II. Background

2.1 Chapter Overview

A background on Circular-Restricted Three-Body Problem (CR3BP) and opti-

mization methods, specifically pseudospectral methods, is provided to lay the ground-

work for the current research. The chapter begins with the derivation of the CR3BP

starting from the N -body problem and then discuss features of the CR3BP, such as

equilibrium solutions, periodic orbits, and “free”-transfer trajectories. A background

on optimization methods is provided and discussion on the specifics of the pseudospec-

tral method used with General Purpose Optimal Control Software (GPOPS) is given.

The remainder of the chapter provides a literature review of relevant works.

2.2 N-body Problem

The N -body problem is a general method to calculate the motion of N objects

only under the gravitational influence of each of their gravitational fields [2]. The

N -body problem assumes each mass is a point mass and then describes the motion

of these bodies. Figure 2.1 shows a notional example of the N -body problem, where

there are N masses in an inertial reference frame.

The N -body problem can be derived as described in [2]. Begin with Newton’s

second law

N∑
i=1

~Fi = mi~̈ri, (2.1)

where ~Fi is the forces experienced by the ith body, m is the masses of the bodies, and

~̈r is the inertial acceleration.

The only force is the gravitational attractions between each of the bodies, so for
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Figure 2.1. The N-body Problem [2]

the ith body, Newton’s second law can be written as

mi~̈ri =
N∑
j 6=i

Gmimj

r2ij

~rj − ~ri
rij

. (2.2)

Equation (2.2) represents the equations of motion (EOMs) for the N-body prob-

lem. Each body has an associated position and velocity ~X = [~r,~v]T . Since there are 6

states associated with each body, there are n unknowns in the N -body problem [18],

where n = 6N .

To solve this problem analytically, all n quantities must be known for all time.

However, the N -body problem has some conserved quantities that reduce the required

number of values that need to be known to solve the problem. These conserved
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quantities are called integrals of the motion, or constants of the motion. If there

exists a full set of integrals of the motion, then the problem is completely solved [18].

The N -body problem possesses 10 integrals of the motion: six of these integrals of the

motion are found from conservation of linear momentum, three are from conservation

of total angular momentum, and one is found from the total energy [18]. With only

ten integrals of the motion, there are not enough integrals to even solve a case where

N = 2 because this would require twelve integrals of the motion [18].

2.2.1 Perturbation Methods

In the N -body problem, the gravitational effects of N bodies are taken into ac-

count, but only as point masses, so no other forces are accounted for outside of the

point-mass gravitational effects. To improve on this model, other effects would need

to be incorporated. These other effects could include drag, the oblateness of the body

(i.e., J2), etc., and are incorporated into the model as perturbations. The fundamen-

tal assumption of perturbation theory is that the perturbing forces are small, so their

effects are also small [18]. Incorporating these small perturbing forces helps to more

accurately represent the real-world motion of an object.

There are two ways to model perturbations: general and special. General pertur-

bations find an approximate analytical solution in the form of equations of motion

by using an infinite series expansion [18, 19]. Special perturbations do not derive an

analytical solution, but instead numerically integrate the equations of motion [18].

General perturbations have the benefit of giving insight into the problem because the

effects of perturbations can be characterized to determine the corresponding change

in the motion. General perturbation methods allow the desired time to be calculated

directly without going through intermediate times, such as in numerical integration,

which makes answers quick to find [18]. However, general perturbation methods have
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the added difficulty of finding an infinite series expansion to approximate the ana-

lytical solution, which can be numerically cumbersome. Special perturbations have

the drawback of having to use numerical integration, which requires calculating the

state of the object at many intermediate time steps between the initial and final time

[18]. However, this numerical integration is less difficult to employ than general per-

turbations [19]. With the improvements in computing power, special perturbations

is becoming more feasible and more common to implement [19].

In the current research, third-body effects will be analyzed. However, the funda-

mental assumption of perturbation theory will be violated because the effects of the

secondary body cannot be considered small. Thus, perturbation methods cannot be

used. Instead, the third-body effects will be directly incorporated into the equations

of motion. Since no closed-form analytical solution is available when N = 3, nu-

merical integration, the same technique used to solve special perturbations, will be

utilized. Before discussing the N = 3 case, the two-body problem where N = 2 is

discussed to provide a simpler introduction to the N -body problem.

2.2.2 Two-Body Problem

The Two-Body Problem (2BP) is the simplest N -body problem where two bodies

are only under the gravitational influence of each other. An in-depth derivation of

the equations of motion in the 2BP an be found in [2]. By beginning in an inertial

frame similar to the N -body problem, the position vectors ~r1 and ~r2 can be defined

as the distance from the inertial frame to m1 and m2, respectively as seen in Fig. 2.2.

From Newton’s second law, the gravitational force for each of these bodies can be

written as

m1~̈r1 = − Gm1m2

||~r1 − ~r2| |3
(~r1 − ~r2) , (2.3)
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Figure 2.2. The Two-Body Problem [2]

m2~̈r2 = − Gm1m2

||~r1 − ~r2| |3
(~r2 − ~r1) , (2.4)

where G is the universal gravitational constant and is approximately equal to 6.67408∗

10−11 m3

kg∗s2 .

Adding Eq. (2.3) and Eq. (2.4) together gives

m1~̈r1 +m2~̈r2 = 0. (2.5)

Define the vector from the center of the inertial frame to the barycenter of the

two masses as ~rC as seen in Fig. 2.2. ~rC is written as
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~rC =
m1~r1 +m2~r2
m1 +m2

. (2.6)

The second inertial derivative of ~rC gives

~̈rC = ~0. (2.7)

Now define the vector from m1 to m2 as ~r as seen in Fig. 2.2

~r = ~r2 − ~r1. (2.8)

Take the second inertial derivative of ~r

~̈r = ~̈r2 − ~̈r1. (2.9)

Next substitute Eq. (2.3) and Eq. (2.4) into Eq. (2.9 resulting in

~̈r = −G (m1 +m2)

r3
~r. (2.10)

By defining µ as µ = G (m1 +m2), Eq. (2.10) becomes

~̈r = −µ~r
r3
. (2.11)

Equation (2.11) is the EOMs for the 2BP. In the case where the second body’s mass

is much smaller than the first body’s mass, m2 � m1, µ simply becomes µ ≈ Gm1.

When this occurs, the larger mass can be treated as an inertial point because ~rC ≈ ~r.

The EOMs from Eq. (2.11) then simply describe the motion of the second body

around the first. Now that the first body is essentially an inertial point, the problem

has been simplified from an N = 2 problem to an N = 1 problem. Therefore, only 6

integrals of the motion are required to solve the problem.
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To find the first integral of the motion, take the dot product of Eq. (2.11) with

~̇r. After simplification, this results in the “vis-viva” equation [2]

ε =
1

2
v2 − µ

r
, (2.12)

where ε is the total energy of the system and v is the velocity of the second mass.

Equation (2.12) is the law of conservation of energy. It is the total energy per unit

mass of the satellite and is one of the integrals of the motion [2].

To find the next integral of the motion, take a cross product of each side of Eq.

(2.11) with ~r. After several simplifying steps and an integration, this leads to specific

angular momentum ~h

~r × ~v = ~h. (2.13)

The specific angular momentum is a vector with three components. Since angular

momentum is conserved, this leads to an additional three constants of the motion.

To find the final two integrals of the motion, take the cross product of Eq. (2.11) and

Eq. (2.13), which leads to

~̇r × ~H − µ~r
r

= µ~e, (2.14)

where ~e is the eccentricity vector and is also a constant of the motion. Although, ~e is

also a vector with three components like angular momentum ~H, it only accounts for

two more integrals of the motion. This is due to the fact that eccentricity must lie

perpendicular to the angular momentum vector, which makes the eccentricity vector

in-plane [2]. Thus, one of the eccentricity vector’s integrals of motions is dependent

on a previous integral of the motion.

There are now enough integrals of motion to guarantee that there is a closed-form
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solution to the 2BP. The integrals of the motion can be combined into a closed form

solution by taking the dot product of Eq. (2.14) and solving for ~r to yield

r =

H2

µ

1 + e cos(ν)
, (2.15)

where ν is called the true anomaly and is the angle between ~r and ~e.

Equation (2.15) gives the behavior of ~r in terms of the integrals of motion and

ν. It is the ”polar form of a conic section with the origin at one focus” [2]. Conic

sections include circles, ellipses, parabolas, and hyperbolas. Therefore, the second

mass is in an orbit with a conic section shape with the first mass located at one of

the foci.

2.3 CR3BP

Another instance of theN -body problem is whenN = 3, known as the Three-Body

Problem (3BP). In the restricted case of the 2BP, the motion of a body of negligible

mass is analyzed near a primary body. This analysis is effective only when near a

single body. In the vicinity of a single body, such as the Earth, the effects of other

bodies can be assumed to be negligible. However, if other bodies’ masses are large

or if the motion being analyzed is farther away from the primary mass, other bodies’

gravitational effects may not be able to be considered negligible. As mentioned earlier,

these effects are frequently analyzed by using the 2BP as the baseline model and then

incorporating the gravitational effects of other bodies as perturbations. If these effects

get too large, though, they cannot be considered perturbations because they violate

the fundamental assumption of perturbations. In these cases, a higher fidelity model

is needed. In the 3BP, the third body’s effects are accounted for directly in the model.

An example of this is in the Earth-Moon system. It is assumed that the Earth and

the Moon are the only two contributors to the motion of a third body. When a third
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body is sufficiently far from Earth (typically considered to be outside geostationary

orbit), then the Moon’s effects are too large to be modeled as perturbations.

Unlike two-body motion, no closed-form analytical solution has been found. There

are only the ten regular constants of the motion and 18 are needed in the 3BP. Other

techniques must be used to gain insight into motion in the 3BP. One of these tech-

niques is making simplifying assumptions to reduce the required number of integrals

of motion. The simplifying assumptions of the CR3BP as found in Grebow and

Szebehely [4, 20] are

1. The third mass is negligible relative to the primary masses (called the primary

and secondary mass). Furthermore, in many systems, such as the Earth-Moon

system, the secondary mass is less massive than the primary mass (known as

the Copenhagen Problem).

m1 > m2 � m3 (2.16)

2. The primary and secondary masses are in a circular orbit about their common

barycenter.

The first assumption implies that the third mass has no effect on the motion of the

other two masses. Therefore, the motion of the other two masses is Keplerian [4]. This

allows for the motion of the orbits to be any of the shapes of the conic section, such

as circular or elliptical. However, the second assumption restricts the problem to the

circular case. There are other well-known problems, such as the Elliptic-Restricted

Three-Body Problem (ER3BP) that allow the orbit to be elliptical instead of circular.

However, the ER3BP is outside the scope of the current research. Figure 2.3 shows

the CR3BP in its rotating reference frame.
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Figure 2.3. The CR3BP in its Rotating Reference Frame

2.3.1 Nondimensionalization

Although not specifically an assumption in the CR3BP, an important general-

ization is the nondimensionalization of the CR3BP EOMs. Nondimensionalization

allows systems of different masses and distances to be directly compared. It also

helps improve numerical solution methods, such as numerical integration [10]. By

keeping all units the same order of magnitude, the problem avoids numerical scaling

issues. The terms that are nondimensionalized are time, mass, and length. These can

be best described by introducing characteristic quantities length, mass, and time. A

table summarizing the characteristic quantities and their dimensionalized value are

given in Table 2.1.
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Table 2.1. Characteristic Quantities for Nondimensionalization in the CR3BP for the
Earth-Moon System [9]

Symbol Unit Definition Dimensional Value

l∗ Length Distance between the primaries 384,400 km

m∗ Mass Total system mass, m1 +m2 6.046 · 1024 kg

t∗ Time

√
l∗3

Gm∗
4.342 days

The characteristic length, l∗, will be defined as the distance between the two

primaries. The length l∗ is constant since the motion is assumed to be circular [4].

Characteristic mass, m∗, is defined as the sum of the masses of two primaries,

m∗ = m1 +m2. (2.17)

The characteristic time, t∗, is computed as the inverse of the primaries orbital

angular velocity [21]

t∗ =

√
l∗3

Gm∗
. (2.18)

This is done so that the gravitational constant, G, equals 1 [2]. The characteristic

time also makes it such that one period, T , of the moon around the earth is equal to

2π, shown as

T = 2π

(
l∗

Gm∗

) 1
2

= 2π. (2.19)

To convert the dimensionalized units to nondimensional units:

rnondimensional =
rdimensional

l∗
, (2.20)
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µ =
m2

m∗
, (2.21)

tnondimensional =
tdimensional

t∗
. (2.22)

The value µ is a unique variable in Eq. (2.21) because it can describe the nondi-

mensional mass of either primary with the following relation [2]:

m1 = 1− µ (2.23)

m2 = µ (2.24)

The unique aspect of this variable is, since nondimensional units are being utilized,

“anything can be measured in terms of µ” [2]. Even the locations of the primaries

can be defined by µ. The more massive primary is located at µ from the barycenter

of the system, while the secondary is located at 1− µ, shown in Fig. 2.3.

2.3.2 Derivation of the CR3BP EOMs

The derivation of the CR3BP EOMs follows the derivation laid out by Wiesel

[2]. However, Szebehely [20] provides an alternative approach to the derivations by

first deriving the EOMs in the sidereal (fixed) reference frame and then converting

them to the synodic (rotating) reference frame. Since the mass of the third body is

considered negligible, the motion of the two primaries is the same EOMs as the 2BP.

Thus, only the motion of the third body will be evaluated. The synodic reference

frame used in this derivation is shown in Fig. 2.3. Similar to the 2BP we begin with

Newton’s second law
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2∑
i=1

~Fi = m3~̈r, (2.25)

where ~Fi are the forces acting on the third body, m3 is the mass of the third body,

and ~̈r is the acceleration of the third body. The summation only goes to N=2 because

the two primaries are the only two bodies that have any effect on the motion of the

third-body.

To solve for ~̈r, the position of the third body in the synodic reference frame is

given as

~r = xx̂+ yŷ + zẑ. (2.26)

The second derivative of this equation in time with respect to the inertial frames

gives the acceleration, which is required to apply Newton’s second Law. However, ~r

is given in the synodic frame, so the transport theorem must be applied to take the

inertial derivative of ~r in the synodic reference frame. The transport theorem is a

way to take the derivative with respect to the inertial frame of a vector given in non-

inertial reference frame coordinates. Details of the transport theorem are described

by Kunz [22]. The first derivative of ~r is given as

i d

dt
~r = s d

dt
~r + ~ωsi × ~r. (2.27)

The second derivative is

i d
2

dt2
~r = s d

2

dt2
~r + 2~ωsi × s d

dt
~r + ~ωsi ×

(
~ωsi × ~r

)
, (2.28)

where the superscript before the derivative is the reference frame the derivative is

taken with respect to (i being the inertial frame and s being the synodic reference

frame) and ~ωsi is the angular velocity of the synodic reference frame with respect to
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the inertial frame. Since the rotational period of the synodic reference frame is 2π

TU, ~ωsi = 1 [2]. Thus, the only unknown components in Eq. (2.28) are s d
dt
~r and

s d2

dt2
~r, which can be simply calculated by taking the derivative in time with respect

to the synodic reference frame of ~r as follows

s d

dt
~r = ẋx̂+ ẏŷ + żẑ, (2.29)

s d
2

dt2
~r = ẍx̂+ ÿŷ + z̈ẑ. (2.30)

After simplifying Eq. (2.28), it becomes

i d
2

dt2
~r = (ẍ− 2ẏ − x) x̂+ (ÿ − 2ẋ− y) ŷ + z̈ẑ. (2.31)

Now that ~̈r3 is found, the gravitational force ~Fi acting on the third body needs to

be calculated. The force of gravity can be written as

~Fg = −Gmamb

r2
~r

r
. (2.32)

In the CR3BP, G = 1, so Eq. (2.32) can be simplified by substituting G = 1. As

can be seen in Eq. (2.32), gravitational force is an inverse square law, so the distance

between the primary bodies and the third body must be determine. The distance

between the primary bodies and the third body is shown in Fig. 2.3 and can be

written as

r1 =
[
(x+ µ)2 + y2 + z2

]1/2
(2.33)

and

r2 =
[
(x− 1 + µ)2 + y2 + z2

]1/2
, (2.34)
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where r1 is the distance between the primary body and the third body and r2 is the

distance between the secondary body and the third body.

With the distance defined, the sum of the forces acting on the third body can be

calculated

~F = −m3

(
(1− µ)~r1

r31
+
µ~r2
r32

)
. (2.35)

Now that the force and acceleration are known, they can be equated from Newton’s

second law in Eq. (2.25). The assumption thatm3 ≈ 0 is intended to be representative

of a limit as m3 → 0 [2]. The assumption is more relevant in ensuring the objects of

the two primary bodies are unaffected by the third body’s mass, so it is still acceptable

to divide the m3 from both sides of the equation [2]. Breaking Eq. (2.25) into its

three components gives

ẍ− 2ẏ − x = −(1− µ)(x+ µ)

r31
− µ(x− 1 +mu)

r32
(2.36)

ÿ + 2ẋ− y = −(1− µ)y

r31
− µy

r32
(2.37)

z̈ = −(1− µ)z

r31
− µz

r32
. (2.38)

Equations (2.36) - (2.38) are the EOMs for the nondimensionalized CR3BP. In-

terestingly, while these equations are three-dimensional, if the third body does not

have any components or motion in the ẑ-direction, then the motion of the object will

remain in the x̂-ŷ plane for all time, since z̈ = 0. This situation is called the planar

CR3BP. If there is motion in the ẑ-direction, then the problem is called the spatial

CR3BP.

These equations of motion are frequently written in an alternative form involving

a pseudopotential U∗ [10], where
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U∗ =
1

2

(
x2 + y2

)
+

1− µ
r1

+
µ

r2
, (2.39)

and thus, the equations of motion become

ẍ = 2ẏ + U∗x (2.40)

ÿ = −2ẋ+ U∗y (2.41)

z̈ = U∗z , (2.42)

where U∗x = ∂U∗

∂x
, U∗y = ∂U∗

∂y
, and U∗z = ∂U∗

∂z
.

2.3.3 Transformation for Barycentric Synodic Reference Frame to Earth-

Centered Inertial (ECI)

Although the synodic frame is useful for analyzing trajectories within the CR3BP,

it is frequently beneficial to view those trajectories in an inertial reference frame. A

common inertial reference frame is the ECI frame. The ECI frame has the center of

the reference frame at the center of the Earth and the reference frame is nonrotating

[23]. The coordinate frame is defined by the x̂-axis being pointed toward the vernal

equinox, the ẑ-axis is about Earth’s rotation axis (perpendicular to the equatorial

plane), and the ŷ-axis simply completes the right-handed reference frame [23]. The

vernal equinox is the line that meets at the intersection of the Earth’s equatorial planes

and the plane of the Earth-Sun [23]. The vernal equinox is a line that is assumed to

be fixed or close enough to fixed to have the coordinate system be considered inertial.

Figure 2.4 demonstrates the relationship between the synodic reference frame and the

ECI. The subscript I represent the inertial frame, and the subscript s represents the

synodic frame. The z component of both reference frames is out of the page. The

variable θ corresponds to dimensionless time in the CR3BP [24].
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Figure 2.4. Synodic and ECI reference frames

The description of the transformation follows the steps in [24]. Begin the trans-

formation by defining the state of the system to be transformed

~Xs =

 ~Rs

~Vs

 , (2.43)

where ~Rs and ~Vs are the synodic frame position and velocity of the point to be

transformed. In component form, they are

~Rs = [xs, ys, zs]
T (2.44)

~Vs = [ẋs, ẏs, żs]
T . (2.45)

As seen in Fig. 2.4, the ẑ-axis is in-line in both reference frames. However, the
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reference frames are offset, since one is focused at the barycenter of the system and

the other is centered at the primary body. The xs coordinates should be translated

before converting reference frames by altering them in the x̂ direction [24]

xs′ = xs + µ, (2.46)

where xs′ is the xs coordinate translated to have the Earth at the center of the

reference frame. The other two position coordinates,ys and zs, are unaffected by this

translation, so the new position ~Rs′ is

~Rs′ = [xs′ , ys, zs]
T . (2.47)

The equation to rotate from the synodic frame to the inertial frame is given as

~RI = QIS ~Rs′ (2.48)

~VI = QIS ~Vs + Q̇IS ~Rs′ , (2.49)

where QIS is the rotation matrix from the synodic frame to the inertial frame. The ro-

tation matrix is defined in [22] and allows for the transformation from one coordinate

system to another. The matrix QIS is given as

QIS =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 . (2.50)

Taking the time derivative gives
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Q̇IS = θ̇


− sin(θ) − cos(θ) 0

cos(θ) − sin(θ) 0

0 0 0

 . (2.51)

In the CR3BP, θ̇ = 1 and θ may be treated as dimensionless time [24]. The

assumption will be made that θ0 = 0, so that there does not need to be an initial

angular offset.

Now that the dimensionless position and velocity have been converted to the

inertial reference frame, they now need to be changed to dimensional units. This can

be done by scaling by the characteristic units as follows

~RI′ = ~RI l
∗ (2.52)

~VI′ = ~VI
l∗

t∗
, (2.53)

where ~RI′ and ~VI′ are the dimensionalized position and velocity, ~RI and ~VI are the

nondimensional position and velocity, and l∗ and t∗ are the characteristic length and

characteristic time, respectively.

2.4 Characteristics of the CR3BP

2.4.1 Symmetries in the CR3BP

The EOMs in the CR3BP exhibit two symmetries. The first symmetry is with the

x-z plane and time [20]. In simple terms, reflections over the x-z plane are backwards

in time. When the state [x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)]T is reflected over the x-z

plane, another solution is found, [x(−t),−y(−t), z(−t),−ẋ(−t), ẏ(−t),−ż(−t)]T [10,

3]. This symmetry is useful in finding periodic orbits because an orbit that intersects
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the x-z plane will have a mirrored orbit that flows in the opposite direction [20]. While

this is not enough to find a periodic orbit it is an essential aspect of the process and

will be discussed further in Section 2.6. An example of this symmetry can be seen in

Fig. 2.5. In this image, the trajectory is reflected over the x-z plane. It is important

to note the direction of travel of both orbits: the initial point on the “original”

trajectory is the final point in the “symmetric trajectory”. This demonstrates the

symmetry in time, as well as symmetry in the x-z plane.

Figure 2.5. Symmetry of CR3BP across the x-z plane and time

The other symmetry in the CR3BP EOMs is over the x-y plane [3]. This symmetry

comes from the motion in the ẑ-direction being decoupled from the motion in the x̂-

and ŷ-directions in the EOMs. This symmetry is described as [x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)]T

is mirrored with [x(t), y(t),−z(t), ẋ(t), ẏ(t),−ż(t)]T [10, 3]. This symmetry is out-of-
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plane, so it is not the plane of the primaries’ rotation. This symmetry is shown in

Fig. 2.6. Since the symmetry is across the x-y plane, the y-z plane is shown. There is

symmetry as the trajectory moves toward and away from the plane of the primaries.

Figure 2.6. Symmetry of CR3BP across the x-y plane

2.4.2 Jacobi Constant

Since the CR3BP is a specific case of the N -body problem, it still has the stan-

dard integrals of motion: total linear momentum, total energy, and total angular

momentum. However, these conserved quantities all deal with the two primaries,

since the third body’s mass is considered negligible [2]. In order to solve the CR3BP,

six integrals of the motion would need to exist, two for each second-order EOMs [2].

As discussed earlier, this problem has no closed form solution, so six integrals of the
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motion have not been found, but one does exist. The one constant of the motion in

the CR3BP is called the Jacobi Constant, or Jacobi’s Integral.

To find the Jacobi Constant, the derivation from [2] will be followed. The process

is done by looking for energy conservation, but in a rotating frame [2]. Take the dot

product of the EOMs from Eq. (2.36), (2.37), and (2.38) in vector form with ~̇r, which

can be written as ~̈r · ~̇r. This results in

ẍẋ+ÿẏ+z̈ż−xẋ−yẏ = −(1− µ)

r31
((x+ µ)ẋ+ yẏ + zż)− µ

r32
((x− 1 +mu)ẋ+ yẏ + zż) .

(2.54)

It can be recognized now that each side is a perfect time derivative of two different

quantities as follows

d

dt

(
1

2

(
ẋ2 + ẏ2 + ż2

))
− d

dt

(
1

2

(
x2 + y2

))
=

d

dt

(
1− µ
r1

)
+
d

dt

(
µ

r2

)
. (2.55)

Thus, Jacob’s Integral is

JC =
1

2

(
ẋ2 + ẏ2 + ż2

)
− 1

2

(
x2 + y2

)
− 1− µ

r1
− µ

r2
. (2.56)

Using Eq. (2.39) and simplifying ẋ2 + ẏ2 + ż2 to v2 this can be written in pseu-

dopotential form as

JC = U∗ − 1

2
v2, (2.57)

where U∗ is the pseudopotential defined in Eq. (2.39).

The Jacobi Integral has units of energy, but this energy is not necessarily “the

total energy of the system measured relative to an inertial frame” [25]. Instead,

the Jacobi constant is an energy-like quantity [10]. The velocity term is not in the
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inertial frame, but rather the rotating frame. If converted back to the inertial frame,

the Jacobi constant would be a “combination of the total energy of the third mass

and its total angular momentum” [2].

Since an analytical solution cannot be produced, the Jacobi constant is frequently

used to check the accuracy of the numerical integration [10]. Since it is a constant of

the motion, it should remain constant throughout a trajectory. Therefore, when nu-

merically integrating a trajectory, the Jacobi Constant can be evaluated at each time

step to ensure that it is constant. Since numerical integration inherently has some

error, the Jacobi constant can never remain perfectly constant, but Fig. 2.7 demon-

strates how constant Jacobi’s Integral remains in an acceptable numerical integration

procedure. Note in Fig. 2.7b that the error is of the order 10−14, which is the same

order as the tolerance used in the numerical integration. Figure 2.8 demonstrates

what happens to Jacobi’s Integral when a trajectory follows an invalid trajectory,

such as going through a numerically unstable point at the second body. When the

trajectory passes through the secondary body, the Jacobi constant spikes as seen in

Fig. 2.8b.

(a) Numerically Integrated Trajectory (b) Jacobi Constant Error

Figure 2.7. Valid Trajectory: Jacobi Constant used to check validity of numerical
integration
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(a) Numerically Integrated Trajectory (b) Jacobi Constant Error

Figure 2.8. Invalid trajectory (through the secondary body): Jacobi Constant demon-
strates the invalidity of the numerical integration

2.5 Equilibrium Solutions

While no closed-from analytical solution exists for the CR3BP, five equilibrium

solutions are present. An equilibrium point is a stationary location where the forces

in the system balance each other. This results in no velocity or acceleration on a

particle located at an equilibrium point [2]. To solve for the equilibrium points, the

accelerations ~̈r and velocities ~̇r in the EOMs from Eq. (2.36), (2.37), and (2.38) must

be set equal to zero [2],

x =
(1− µ)(x+ µ)

r31
+
µ(x− 1 + µ)

r32
(2.58)

y =
(1− µ)y

r31
+
µy

r32
(2.59)

0 = −(1− µ)z

r31
− µz

r32
. (2.60)

Equation (2.60) quickly demonstrates that z = 0 to find an equilibrium solution.
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This simplifies the equilibrium points to entirely in the plane. Now x and y must

be solved for from Eq. (2.58) and (2.59). Leonhard Euler discovered the first three

equilibrium points in 1765 [10]. They can be found using a root-finding technique,

such a the Newton-Raphson method. These three roots are all collinear lying on the

x̂-axis. The first equilibrium point lies between the primary and secondary body; the

second equilibrium point lies beyond the secondary body; and the third equilibrium

point lies on the far side the primary body, opposite the secondary mass [3] called

L1, L2, and L3, respectively.

The final two equilibrium points were discovered by Lagrange in 1772 [20]. This

is where the equilibrium points get one of their alternative names: Lagrange points.

The final two Lagrange points, called L4 and L5, are found by setting r1 = r2 = 1.

While this appears to just cancel out all the variables in Eq. (2.58) and (2.59), it

actually contains all the necessary information to find the final Lagrange points [2].

This is because the points lie at points on an equilateral triangles, with two vertices

being the primary and secondary body and the final being the Lagrange point. The

location of the final two points is at x = µ− 1
2

and y = ±
√
3
2

, where the positive sign

corresponds to the fourth Lagrange point and the negative sign corresponds to the

fifth Lagrange point [20, 3]. Figure 2.9 shows all five Lagrange points location in the

Earth-Moon system.
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Figure 2.9. Lagrange Points in Earth-Moon System

The location of the Lagrange points in the Earth-Moon system can be seen in

Table 2.2.
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Table 2.2. Location of the Lagrange Points in the Earth-Moon system [10]

Lagrange Point X Y Units

L1

0.836915121142417

321710.172567150

0

0

Nondimensional

Kilometers

L2

1.155682169063842

444244.2257881407

0

0

Nondimensional

Kilometers

L3

-1.005062646202315

-386346.0812001700

0

0

Nondimensional

Kilometers

L4

0.487849413449431

187529.3145299614

0.866025403784439

332900.1652147382

Nondimensional

Kilometers

L5

0.487849413449431

187529.3145299614

-0.866025403784439

-332900.1652147382

Nondimensional

Kilometers

The Earth-Moon system has a µ ≈ 0.01215 [3]. However, in a different system,

the µ-value will change. For example, in the Sun-Jupiter system µ ≈ 9.53e − 4 and

in the Sun-Earth system µ ≈ 3.0e − 6 [3]. The value of µ in each system affects the

location of the Lagrange points. As the µ value changes, a distinct path is followed by

the Lagrange points. Figure 2.10 demonstrates the location of the Lagrange points

for different values of µ. Notice that the planar Lagrange points follow a distinct

S-shaped curve with L1 and L2 coalescing as µ → 0 and L1 and L3 coalescing as

µ→ 1 [3]. L4 and L5 are in straight lines that connect at points that lie on the circle

created by L1 coalescing with L2 and L3 [3].
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Figure 2.10. Lagrange Points as a function of µ. The current location of the points is
at µ ≈ 0.01215 to represent the Earth-Moon System (Adapted from Doedel et al. [3])

2.6 Periodic Orbits

Determining how a trajectory behaves over a long period of time, such as t→∞,

is not possible for many trajectories in problems that require numerical methods to

solve [20]. However, several special cases allow insight into the trajectory as t→∞.

These special cases are “asymptotic, periodic, or almost periodic” trajectories [20].

Periodic motion is when the “same configuration is repeated at regular intervals of

time” [20]. When the trajectories are known for a long period of time, analysis can be

done to determine general behavior of the problem. In the case of CR3BP, families

of orbits can be generated with the periodic property [20].

While periodic orbits in the CR3BP are not currently being utilized by the mil-
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itary, they could be exploited in the future. Periodic orbits could offer potential

military applications as a location to be used as a parking orbit. Satellites could

be held in these repeating trajectories until needed for a desired mission, such as

reconstitution.

2.6.1 Equations of Variation

To generate periodic orbits, a boundary value problem (BVP) must be solved. In

a BVP, a final position ~rf is sought from some initial guess by numerically integrating

the EOMs in the form

~̇x = ~f(~x, t). (2.61)

Unless the desired trajectory is already known, the initial guess will not follow the

desired trajectory exactly [18] as seen in Fig. 2.11. A differential corrections process

can be used to determine the initial conditions. The differentials corrections process

involves finding information about all nearby orbits and the influence of ~x0 on ~xf [18],

so that the initial guess can be updated in a logical manner.

The differential corrections process will be described following the explanation

from [2]. Begin by selecting a set of initial conditions ~x0(t0) that, when numerically

integrating Eq. (2.61), gives the trajectory ~x0(t). A general nearby trajectory would

be described as

~x(t) = ~x0(t) + δ~x(t), (2.62)

where the δ~x(t) is a small variation away from the orbit ~x0(t).

Substituting Eq. (2.62) into Eq. (2.61) gives
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Figure 2.11. Boundary Value Problem Example

~̇x0 + δ~̇x = ~f(~x0 + δ~x, t). (2.63)

Expanding this equation in a first-order Taylor series about ~x = 0 [3, 18] gives

~̇x0 + δ~̇x ≈ ~f(~x0, t) +
∂ ~f

∂~x

∣∣∣∣∣
~x0

δ~x. (2.64)

After simplifying, the derivation evolves as

δ~̇x =
∂ ~f

∂~x

∣∣∣∣∣
~x0

δ~x = A(t)δ~x. (2.65)

Equation (2.65) is known as the first-order equations of variation [18, 4]. ∂ ~f
∂~x

is a

square matrix of partial derivatives called A(t). A(t) is found by taking the partial

derivative of the the EOMs with respect to the states.

To find the general solution to the equations of variation in Eq. (2.65), the state
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transition matrix must be introduced. The state transition matrix is used to predict

variations along a path [4]. The state transition matrix provides information about

the sensitivity of the final conditions to changes in the initial conditions [10]. It must

satisfy the the differential equation

Φ̇(t, t0) = A(t)Φ(t, t0) (2.66)

with initial conditions

Φ(t0, t0) = I, (2.67)

where I is the identity matrix. Equation (2.66) is an alternate form of the equations

of variation [18].

The state transition matrix obeys the following identities [18]:

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) (2.68)

Φ(t0, t1) = Φ−1(t1, t0). (2.69)

With the state transition defined, a general solution to the equations of variation

in Eq. (2.65) can be found as

δ~x(t) = Φ(t, t0)δ~x(t0). (2.70)

Thus, by numerically integrating both the equations of motion in Eq. (2.61) and

the equations of variation in Eq. (2.66) in parallel, everything about the trajecto-

ries nearby to our original trajectory x0 is known [18]. This means changes to our

initial conditions can be made through Eq. (2.70) to arrive at a desired trajectory.

Numerically integrating the equations of motion and the equations of variation can
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be computationally expensive. There are N2 equations of variation in Eq. (2.66)

and N EOMs, so N2 + N equations must be numerically integrated simultaneously

[2]. For the CR3BP, there are 42 equations that must be numerically integrated

simultaneously.

The problem is now a BVP, as seen in Fig. 2.11. Common methods of solving

boundary value problems include single-shooting and multiple-shooting methods. In

a shooting method, initial conditions are selected and propagated forward in time.

A correction is made on the initial condition to allow the propagated trajectory to

approach the desired trajectory within a specified tolerance. When the state transition

matrix is used to correct the initial conditions, this process is known as differential

corrections. Since Eq. (2.65) is a linear first-order approximation, more than one

iteration may be required to converge on the desired trajectory.

2.6.2 Differential Corrections Applied to the CR3BP

A detailed derivation of the variational equations of motion specific to the CR3BP

can be found from Szebehely and Brick [20, 10]. To find the equations of variation in

the CR3BP, the A(t) matrix discussed in Section 2.6.1 must be found. To find A(t),

N2 partial derivatives of the EOMs must be found [18]. The equations of motion are

given in pseudopotential form in Eq. (2.40)-(2.42). The partials of these equations

leads to the following [4, 20]

A(t) =

 03×3 I3×3

UXX Ω

 , (2.71)

where 03×3 is a 3× 3 submatrix of zeros, I3×3 is a 3× 3 identity submatrix, UXX and

Ω are submatrices defined as follows
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UXX =


U∗xx U∗xy U∗xz

U∗yx U∗yy U∗yz

U∗zx U∗zy U∗zz

 (2.72)

and

Ω =


0 2 0

−2 0 0

0 0 0

 . (2.73)

The term UXX is a submatrix of second partial derivatives where Uij = ∂2U
∂j∂i

.

With A(t) defined, only Φ(t, t0) needs to be derived to allow the differential equa-

tion dealing with the state transition matrix in Eq. (2.66) to be solved. The state

transition matrix is the “Jacobian of the final state, ~X(t), with respect to the initial

state, ~X0(t)” [10] as follows

Φ(t, t0) =



∂x(t)
∂x(t0)

∂x(t)
∂y(t0)

∂x(t)
∂z(t0)

∂x(t)
∂ẋ(t0)

∂x(t)
∂ẏ(t0)

∂x(t)
∂ż(t0)

∂y(t)
∂x(t0)

∂y(t)
∂y(t0)

∂y(t)
∂z(t0)

∂y(t)
∂ẋ(t0)

∂y(t)
∂ẏ(t0)

∂y(t)
∂ż(t0)

∂z(t)
∂x(t0)

∂z(t)
∂y(t0)

∂z(t)
∂z(t0)

∂z(t)
∂ẋ(t0)

∂z(t)
∂ẏ(t0)

∂z(t)
∂ż(t0)

∂ẋ(t)
∂x(t0)

∂ẋ(t)
∂y(t0)

∂ẋ(t)
∂z(t0)

∂ẋ(t)
∂ẋ(t0)

∂ẋ(t)
∂ẏ(t0)

∂ẋ(t)
∂ż(t0)

∂ẏ(t)
∂x(t0)

∂ẏ(t)
∂y(t0)

∂ẏ(t)
∂z(t0)

∂ẏ(t)
∂ẋ(t0)

∂ẏ(t)
∂ẏ(t0)

∂ẏ(t)
∂ż(t0)

∂ż(t)
∂x(t0)

∂ż(t)
∂y(t0)

∂ż(t)
∂z(t0)

∂ż(t)
∂ẋ(t0)

∂ż(t)
∂ẏ(t0)

∂ż(t)
∂ż(t0)


(2.74)

Now that all the required equations are defined relative to the CR3BP, the differ-

ential corrections process may be described. In the CR3BP, the differential corrections

process takes advantage of the symmetry over the x-z plane and in time. This de-

scription of the differential corrections process in the CR3BP follows the description

by [26, 4]. Begin by selecting an initial condition that is perpendicular to the x-z

plane
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~X0 = [x0, 0, z0, 0, ẏ0, 0]T . (2.75)

The initial condition in Eq. (2.75) will be propagated forward in time until it

crosses the x-z plane. The solution will be found when this crossing of the x-z plane

is also perpendicular to the plane [26]

~X(T/2) = [x, 0, z, 0, ẏ, 0]T , (2.76)

where T is the period.

By crossing perpendicular to the plane, the symmetry in time and over the x-z

plane, guarantees the trajectory will return to the original starting point. Thus, the

crossing at y = 0 is halfway through one period, shown in Fig. 2.12.
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Figure 2.12. Crossing of the x-z plane for an initial guess and then again after differential
corrections, such that the crossing is perpendicular to the x-z plane (Adapted from
Grebow [4])

With the objective in mind of finding a perpendicular x-z crossing at T/2, the

differential corrections process may be used to slightly vary the initial conditions to

reach the desired end point. The differential corrections process begins by propagating

the initial conditions and the state transition matrix forward in time until “y changes

signs” [26], indicating an x-z plane crossing. If both |ẋ| and |ż| are less than a

specified tolerance, then a periodic orbit has been found. [26] defines 10−8 as the

required tolerance to declare an orbit as periodic. If the tolerance is not met, then

the initial conditions need to be adapted using the differential corrections process in

Eq. (2.70)
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δx

δy

δz

δẋ

δẏ

δż


=



Φ11 Φ12 Φ13 Φ14 Φ15 Φ16

Φ21 Φ22 Φ23 Φ24 Φ25 Φ26

Φ31 Φ32 Φ33 Φ34 Φ35 Φ36

Φ41 Φ42 Φ43 Φ44 Φ45 Φ46

Φ51 Φ52 Φ53 Φ54 Φ55 Φ56

Φ61 Φ62 Φ63 Φ64 Φ65 Φ66





δx0

δy0

δz0

δẋ0

δẏ0

δż0


+



ẋ

ẏ

ż

ẍ

ÿ

z̈


δτ, (2.77)

where [δx0, δy0, δz0, δż0, δẏ0, δż0]
T are the changes to the initial conditions,

[δx, δy, δz, δż, δẏ, δż]T are the desired changes to the final condition, and δτ is the

change in time of the period of the orbit due to the changes in the initial conditions

[27].

In essence, the differential corrections process in this case is adapting the three

non-zero initial states (x0, z0, ẏ0) to target the two final states (ẋ, ż). Thus, many

of the term in Eq. (2.77) are unneeded. There cannot be any change in the initial

states y0, ẋ0, and ż0 because the trajectory would not start perpendicular to the x−z

plane. Any terms in the state transition matrix associated with y0, ẋ0, and ż0 are

therefore unneeded[27]. Similarly, at the final state, the terms x, z, and ẏ can take

any value. Since their value is not being target in the differential corrections scheme,

the terms in the state transition matrix associated with x, z, and ẏ are also unneeded

[27]. These changes are shown in Eq. (2.78) as follows



δx

δy

δz

δẋ

δẏ

δż


=



Φ11 Φ12 Φ13 Φ14 Φ15 Φ16

Φ21 Φ22 Φ23 Φ24 Φ25 Φ26

Φ31 Φ32 Φ33 Φ34 Φ35 Φ36

Φ41 Φ42 Φ43 Φ44 Φ45 Φ46

Φ51 Φ52 Φ53 Φ54 Φ55 Φ56

Φ61 Φ62 Φ63 Φ64 Φ65 Φ66





δx0

0

δz0

0

δẏ0

0


+



ẋ

ẏ

ż

ẍ

ÿ

z̈


δτ. (2.78)
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Since it is known the δy = 0, since y must equal 0 at the x-z plane crossings, δy

can be used to find δτ [27]

δy = 0 = Φ21δx0 + Φ23δz0 + Φ25δẏ0 + ẏδτ. (2.79)

To solve for δẋ and δż, it is convenient to constrain one of the initial variables,

so that the inverted matrix is a 2× 2, instead of a 2× 3 [28]. Thus, one option is to

only change z0 and ẏ0, and leave x0 fixed [26]

δẋ
δż

 =


Φ43 Φ45

Φ63 Φ65

− 1

ẏ

ẍ
z̈

(Φ23 Φ25

)
δz0
δẏ0

 . (2.80)

The other option is to only change x0 and ẏ0, and leave z0 fixed [26]

δẋ
δż

 =


Φ41 Φ45

Φ61 Φ65

− 1

ẏ

ẍ
z̈

(Φ21 Φ25

)
δx0
δẏ0

 . (2.81)

Either of the methods can be used, so if one does not work, then the other can

be attempted. Use Eq. (2.80) and Eq. (2.81) to solve for the changes in the initial

conditions. Adapt the initial conditions, then perform the differential procedure over

again. According to [26] and [28], the process should converge in less than 5 iterations.

The second half of the orbit can be found using the symmetry about the x-z plane

or by numerically integrating the initial conditions for an entire period, T [26].

Since this is a differential corrections process, the initial guess must be close to

the true initial conditions. Grebow tabulates initial conditions for different periodic

orbits that can be used as an initial guess in the differential corrections process [4].

There are many different periodic orbits in the CR3BP. Describing all of these

periodic orbits is beyond the scope of the current research, but a detailed description

of numerous periodic orbits can be found in Grebow and Doedel et al. [4, 3]. One
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example periodic orbit is the Lyapunov family of orbits. A family of orbits are orbits

that “posess similar behavior” [10]. The Lyapunov family of orbit are planar periodic

orbits that are around the collinear libration points [3]. The L1 Lyapunov family is

shown in Fig. 2.13. It should be noted that bifurcations are locations where one

family of orbits coincides with another family of orbits [3].

Figure 2.13. L1 Lyapunov Family in the Earth-Moon System (Adapted from Grebow
[4])

2.7 Invariant Manifolds

Manifolds are a set of all trajectories that make up “a surface of lower dimension

imbedded within the phase space” [18]. In other words, manifolds are the description

of the motion an object can take if perturbed from its motion about some equilib-
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rium point [29]. Manifolds are more precisely named invariant manifolds due to the

CR3BP being “time-invariant” [18]. Every periodic orbit and equilibrium point has

a set of invariant manifolds [29]. When on an invariant manifold, a spacecraft will

stay on it for all time [18]. While on an invariant manifold, no fuel expenditure is

required because manifolds share a constant energy [30]. An invariant manifold can

be separated into two categories: stable and unstable. An unstable manifold is one

that originates on a periodic orbit (or equilibrium point) and departs that orbit as

t→∞ [18]. Similarly, a stable manifold will arrive on a periodic orbit as t→∞ [18].

To find a manifold, the periodic orbit must be perturbed in the unstable or sta-

ble direction in the positive or negative time, respectively [30]. To determine the

direction of perturbation, the state transition matrix must be propagated for one full

orbit. When the state transition matrix has been propagated for an entire orbit, it

contains information about every point along the orbit and is called the monodromy

matrix [29]. The monodromy matrix contains six eigenvalues that describe “stable,

oscillating and/or unstable modes” [30]. In order to determine the dominant effects,

the smallest and largest real eigenvalue must be determined [30, 29]. The smallest

eigenvalue, λS, identifies the dominant stable perturbation, while the largest eigen-

value, λU , identifies the dominant unstable perturbation [30]. These eigenvalues have

associated eigenvectors, ~vS and ~vU , that describe the direction of stable and unstable

perturbations [30]. The direction of perturbation can be calculated at each point in

the periodic orbit by use of the monodromy matrix’s stable and unstable eigenvectors.

After calculating the stable and unstable eigenvectors, the manifolds can be de-

termined. At any point in the trajectory of the periodic orbit, the state is defined

as ~X(t) = [x, y, z, ẋ, ẏ, ż]. To find the initial condition of the manifold, it must be

perturbed away from the initial state as follows [30]
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~XS(t) = ~X(t)± ε~̂vS (2.82)

~XU(t) = ~X(t)± ε~̂vU , (2.83)

where ~XS(t) is the stable manifold initial conditions, ~XU(t) is the unstable mani-

fold initial conditions, ε is the size of the perturbation, ~̂vS is the normalized stable

eigenvector, and ~̂vU is the normalized unstable eigenvector.

In theory, the perturbation ε is infinitely small, leading to the infinite time required

to depart or arrive at the periodic orbit [18]. However, finite perturbations can be

used to approximate the manifold, but they must be carefully selected: too large

results in inaccurate trajectories and too small results in large computation times

[30]. In [30], Truesdale recommends a perturbation value of 1e−4 in the Earth-Moon

system.

With the initial conditions of the manifold found, symmetry allows the manifold to

be numerically integrated forward or backward in time to find the unstable or stable

manifold, respectively. Since there are an infinite number of points on a periodic

orbit, there are also an infinite number of manifolds that a spacecraft could follow

[30]. These manifolds form a tube [29]. An example manifold tube can be seen in

Fig. 2.14.

Notice how in the stable manifold, motion on the trajectory moves toward the

periodic orbit, while it moves away from the periodic orbit on the unstable manifold.

The manifolds also have a symmetry about the x-z plane, which is expected for

motion in the CR3BP.
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Figure 2.14. Stable (left) and Unstable (right) Manifold in the Earth-Moon System
(Reproduced with Permission from Elsevier) [5]

2.8 Heteroclinic Connections

Periodic Orbits in the CR3BP contain homoclinic and heteroclinic connections. A

homoclinic connection is when an unstable manifold connects with itself, allowing it to

return to its original periodic orbit [5]. Homoclinic connections are not the focus of the

current research, so they will not be discussed any further. A heteroclinic connection

is found when a stable and unstable manifold intersect [31]. Thus, a spacecraft would

theoretically be able to make a “free” transfer from one periodic orbit and arrive on a

secondary orbit [5]. These “free” transfers make heteroclinic trajectories appealing in

the CR3BP. In reality, a small cost would be associated with heteroclinic trajectories

to ensure the spacecraft transferred between manifolds. However, the small cost would

still offer immense cost savings over conventional transfers in the 2BP.

Although there are heteroclinic connections in the spatial CR3BP, it is easier

to gain an understanding of these free transfers in the planar CR3BP. To start, a

planar manifold must be characterized by ~X = [x, y, ẋ, ẏ] making it four-dimensional

[5]. Before going further, an assumption is made that both periodic orbits must

have the same Jacobi Constant. This implies that the stable and unstable manifolds
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propagating from these periodic orbits also have the same Jacobi Constant [5]. Thus,

the dimensionality of the problem is reduced to 3.

Next, both the unstable manifold of the initial periodic orbit and the stable man-

ifold of the final periodic orbit are propagated until they cross a “surface of sec-

tion” selected at some x-position [5]. A “surface of section” was proposed by Henri

Poincaré and is used to reduce the dimensionality of the space from 3-dimensions to

2-dimensions [18]. Figure 3.7 demonstrates the placement of a surface of section.

Figure 2.15. Surface of Section placed between two Lyapunov periodic orbits in the
Earth-Moon System (Reproduced with Permission from Elsevier) [5]

A point is plotted every time the trajectory intersects the surface of section [18].

The surface of section then results in a two-dimensional Poincaré map [5]. There are
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three different types of Poincaré maps that allow for sign ambiguity in the Jacobi

Constant to be accounted for [5]:

• One-sided Maps:

– P+: Only trajectories with positive intersection with the surface of section

are plotted (for example, positive ẋ values) [5]

– P−: Only trajectories with negative intersection with the surface of section

are plotted (for example, negative ẋ values) [5]

• Two-sided Maps:

– P±: all trajectories with intersection with the surface of section are plotted

[5]

Ignoring sign ambiguities in the Jacobi constant, any intersection of points on the

Poincaré map guarantees position and velocity are aligned at that point [31]. Since

all the states are aligned, then a heteroclinic connection is present. At this point

a spacecraft could transfer from the unstable manifold of the starting orbit to the

stable manifold of the final orbit at no cost [5]. Figure 3.8 demonstrates a Poincare

Map and the associated heteroclinic trajectories.
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Figure 2.16. Lower: Poincare Map of the manifolds intersecting the Surface of Section.
Upper: The Heteroclinic Trajectories found from the two points of intersection on the
Poincare Map (Reproduced with Permission from Elsevier) [5]

2.9 Static Optimization

There are many ways to classify optimal control problems, but an important

distinction is between static and dynamic optimization. Static optimization takes

place at a single point in time, while dynamic optimization problems deals with a

changing problem. The dynamics of the problem describe how it changes over time,

but these dynamics can be discretized to solve the dynamic optimization problem.

The fundamentals used in static optimization can be used in dynamic optimization

after discretization. Methods for discretization of a dynamic problem will be discussed

in Section 2.10, but the basics of static optimization will be demonstrated to give a
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foundation to apply to dynamic optimization.

The derivation of static optimization fundamentals is taken mostly from [32], [33],

[34], and [35].

Static Optimization in its unconstrained form is given as

minimize
~x

f(~x). (2.84)

Equation (2.84) shows that the variable ~x is to be found, while minimizing the

cost function J , where J = f(~x).

In a situation where the maximum needs to be found instead of the minimum, the

cost function can simply be made negative so that the function remains in standard

form. It should be noted that the problem can be constrained or unconstrained. The

form shown in 2.84 is for the unconstrained case.

In the unconstrained case, a critical point of a function can be determined by

setting the first derivative equal to zero, which can also be stated as setting the

Jacobian equal to zero if ~x is a vector. The critical points can be found as

∇f(~x∗) = ~0. (2.85)

This is called the first-order necessary condition because it is necessary to be a

minimum, but it is not sufficient to declare the point a minimum because it could

also be a maximum or an inflection point. In order to determine if the critical point is

truly a minimum, second-order conditions must be checked. Second-order conditions

can be found by taking the Hessian and determining if it is positive definite or positive

semi-definite. The Hessian is a matrix of second-partial derivatives. Positive semi-

definite is still a second-order necessary condition because it still does not guarantee

that the critical point is a minimum
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H(~x∗) = ∇2f(~x∗) ≥ ~0. (2.86)

However, if the Hessian is positive-definite, then the second-order sufficient con-

dition is satisfied and the critical point is a minimum

H(~x∗) = ∇2f(~x∗) > ~0. (2.87)

A point that satisfies both the necessary and sufficient conditions is guaranteed to

be at least a locally optimal solution. However, it is unknown if it is globally optimal.

To be globally optimal there must not be any other values of x that are smaller than

it within the boundary. Figure 2.17 is an example of global and local points.

Figure 2.17. Global and Local Maxima and Minima (Adapted from Hess [6])
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Static Optimization in the constrained case is typically given in the standard form:

minimize
~x

J = f(~x)

subject to ~h(~x) = ~0,

~g(~x) ≤ ~0.

(2.88)

In the standard form, ~x is the variable that needs to be found, J is the cost function

that is being minimized, ~h(~x) are the equality constraints, and ~g(~x) are the inequality

constraints. In order to solve the unconstrained static optimization problem, the

constraints must be appended onto the cost function to form the Lagrangian. To

add on the constraints without changing the cost function, they are added on in

“convenient forms of zero” [33]

L(~x,~v, ~u) = f(~x) +

p∑
i=1

vihi(~x) +
m∑
j=1

ui
(
gi(~x) + s2j

)
= f(~x) + ~vT~h(~x) + ~uT~g′(~x)

, (2.89)

where ~v are the Lagrange Multipliers associated with the equality constraints and

~u are the Lagrange Multipliers associated with the inequality constraints. In or-

der to append the inequality constraints, a “slack variable” s2 is for each inequality

constraint is introduced to convert the inequality constraints to equality constraints.

Since the equality constraint and the converted inequality constraint are both equal

to zero, adding this on is the same as appending zeros to the cost function.

To find the minimum of the Lagrangian, Karush-Kuhn-Tucker (KKT) conditions

must be applied. Like in the unconstrained case, there are necessary and sufficient

conditions. The first-order necessary conditions include the following 4 conditions

[34]:
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1. Gradient check - ensure the Lagrangian is stationary with respect to the design

variables, the Lagrange multipliers, and the slack variables

∂L

∂~x
= ~0

∂L

∂~u
= ~0

∂L

∂~v
= ~0

∂L

∂~s
= ~0

(2.90)

2. Feasibility Check for Inequality constraints - ensure the slack variables are meet-

ing their requirement

s2j ≥ 0 for j = 1, 2, . . . , n (2.91)

3. Non-negativity of Lagrange Multipliers for inequality constraints

u∗j ≥ 0 for j = 1, 2, . . . , n (2.92)

4. Regularity check - the gradients of the active constraints are linearly indepen-

dent. An active constraints is when the slack variable is equal to zero, meaning

that the associated inequality constraint is essentially an equality constraint.

The second-order sufficient conditions are test to guarantee the point is a local

minimum. This is done by taking the Hessian of the Lagrange function. If the Hessian

of the Lagrangian is positive definite, then the point is a minimum point

H(~x∗) = ∇2L(~x∗) > ~0. (2.93)

The KKT conditions are the fundamentals behind solving a constrained nonlinear-

programming (NLP) problem [35]. An NLP problem is optimization of a nonlinear
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scenario. Computers are well-equipped to hand NLP algorithms and there are many

algorithms available to solve them in different scenarios, including Interior Point

Optimizer (IPOPT) and Sparse Nonlinear Optimizer (SNOPT).

IPOPT and SNOPT are both sparse NLP solvers and are capable of solving prob-

lems with a large number of variables and constraints [7]. The difference lies in

what method the two solvers use. SNOPT uses a Sequential Quadratic Programming

(SQP) quasi-Newton Method, while IPOPT uses an interior-point method [7].

2.10 Dynamic Optimization Discretization

Dynamical optimal control problems must be reformulated to allow an NLP solver

to be used. There are two categories of methods to convert the problem from continu-

ous to discrete: direct and indirect. The major distinction between the two methods

is indirect optimization utilizes the Euler-Lagrange equations in Optimal Control

Theory, while direct optimization does not utilize these equations explicitly [36].

2.10.1 Indirect Optimization

Indirect optimization utilizes optimal control theory, which uses the first-order

differential Euler-Lagrange equations derived from calculus of variations to find the

optimal solution. The following is a derivation of the Euler-Lagrange equations fol-

lowing the steps provided in [36] and [7]. A more detailed derivation can be found in

[?] and [25]. An optimal control problem is given in the Bolza form

minimize
~u

J = Φ(t0, ~x(t0), tf , ~x(tf )) +

∫ tf

t0

L(t, ~x(t), ~u(t))dt

subject to ~̇x = ~f(t, ~x(t), ~u(t)),

φ(t0, ~x(t0), tf , ~x(tf )) = ~0,

~Cmin ≤ ~C(t, ~x(t), ~u(t)) ≤ ~Cmax,

(2.94)
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where t0 is the initial time, tf is the final time, ~x is the state vector, and ~u is the

control vector. In Eq. (2.94), J is the cost functional that is to be minimized, ~̇x are

the dynamic constraints in the form of differential equations, φ is the collection of

boundary conditions, and ~C are the path constraints.

In order to solve for first-order optimality conditions, the constraints must be

appended on to the cost function by multiplying each constraint by a Lagrange mul-

tiplier and subtracting it from the cost function.The augmented cost function is

Ja = Φ− ~υT ~φ+

∫ tf

t0

[
L+ ~λT (~f − ~̇x)

]
dt, (2.95)

where υ is the Lagrange multiplier of the boundary conditions and λ is the is the

Lagrange multiplier of the state (called the costate or adjoint of the differential equa-

tion).

Taking the variation of the cost function and setting it equal to zero gives the

necessary conditions for optimality [37]. This is similar to the static case [37]. To

perform this operation, the Hamiltonian must be introduced [37]

H(~x,~λ, ~u) = L+ ~λT ~f. (2.96)

After setting the variation of the cost function equal to zero, the necessary condi-

tions are found [37]. The first set of the necessary conditions in Eq. (2.97) are know

as the control equations [37]
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δ~υ = ~0; δ ~x0 = ~0; δ ~xf = ~0; δ~t0 = ~0; δ~tf = ~0;

φ(t0, ~x(t0), tf , ~x(tf )) = ~0;

~λ(t0) = −
[

∂Φ

∂~x(t0)

]T
+

[
∂φ

∂~x(t0)

]T
~υ;~λ(tf ) =

[
∂Φ

∂~x(tf )

]T
−
[

∂φ

∂~x(tf )

]T
~υ;

H(t0) =
∂Φ

∂t0
− ~υT ∂φ

∂t0
;H(tf ) = −∂Φ

∂tf
+ ~υT

∂φ

∂tf

. (2.97)

The next set of necessary conditions in Eq. 2.98is known as the Euler-Lagrange

equations

~̇x =

[
∂H

∂~λ

]T
= ~f(~x(t), ~u(t), t) (2.98a)

~̇λ = −
[
∂H

∂~x

]T
(2.98b)[

∂H

∂~u

]T
= ~0. (2.98c)

The Euler-Lagrange equations from Eq. (2.98) have three parts. Equation (2.98a)

is the state dynamics, Eq.(2.98b) is the costate dynamics, and Eq. (2.98c) is the sta-

tionarity condition. Collectively, Eq. (2.97) and (2.98) are the first-order necessary

conditions that, when satisfied, represent the optimality conditions. The problem is

now a Hamiltonian Boundary Value Problem. Hamiltonian Boundary Value prob-

lems can be solved in a variety of ways, including shooting and multiple-shooting

methods [7]. These solutions are generally only used to find analytical solutions to

straightforward optimization problems. More complex problems generally use numer-

ical optimization methods [36].
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2.10.2 Direct Optimization

Unlike indirect optimization, direct optimization does not involve deriving opti-

mality conditions and is a more “brute force” approach [36]. There are two classifi-

cations of direct optimization based on what is being parametrized. Parametrization

is the process of selecting a function to approximate the optimized variables at dis-

crete points. This type of direct optimization utilizes control parameterization, which

requires solving by shooting or multiple shooting methods, similar to how the Hamil-

tonian Boundary Value Problem is solved in the indirect case. The second type of

direct optimization uses both state and control parametrization. This method uses

collocation to discretize the optimal control problem and allow it to be solved with

the NLP solvers.

In collocation, dynamics are no longer propagated. Instead, the differential equa-

tions are converted to algebraic constraints [7]. This is done by discretizing the

problem in time by dividing into segments. The following description of collocation

is taken from Rao and Stanton [7, 36]. Time is divided into segments as

t0 < t1 < t2 < . . . < tN−1 < tN , (2.99)

where tN = tf . The time where these mesh points are placed can be of variable-length.

The parameters x that are going to be optimized represent the value of the control

and the states at each of those mesh points

~x = (x1, u1, . . . , xM , um), (2.100)

where M is the number of states and m is the number of controls in the problem.

If initial and final time are free, then they must also be included as parameters
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that need to be optimized gving

~x = (x1, u1, . . . , xM , um, t0, tf ). (2.101)

The cost, constraint functions, boundary conditions, and dynamics must be de-

rived in terms of x . The continuous dynamics, called the continuity constraint, must

be discretized to algebraic equations to create a NLP of the following form:

min
~x

J = f(~y)

s.t. ~g(~x) = ~0,

~hmin ≤ ~h(~x) ≤ ~hmax.

(2.102)

Since the dynamics are now approximated by algebraic equations there will be

defects [7]. The goal is to make these defects as close to zero as possible, so that the

dynamics are accurately represented.

2.10.3 Characteristics of Direct and Indirect Methods

Indirect methods and direct methods have distinct tradeoffs. Indirect methods

have the difficulty of deriving optimality conditions. This can be cumbersome and is

generally only used for simple problems [36]. To further exacerbate the issue, solving

the Hamiltonian Boundary Value Problem can be very difficult and the problem

has a small radii of convergence [7]. However, indirect methods have the benefit of

producing not only the state and control, but also the costate. This allows greater

insight into the problem, specifically by seeing how close a solution is to optimal.

Direct methods do not have the issue of deriving optimality conditions, so they

can be very appealing as they do not require a deep understanding of optimization

to apply. However, the tradeoff is a large number of parameters after discretizing the
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problem. In direct methods, each node contains all the states, control, and possibly

even t0 and tf . This means that a problem utilizing direct methods has n parameters

[36]

n = (nx + nu))nN + 2, (2.103)

where nx is the number of states, nu is the number of controls, and nN is the the

number of nodes. The additional two parameters account for t0 and tf .

This demonstrates how large direct methods can become. This generally is not

an issue however because using collocation leads to a large sparse NLP [7]. A sparse

NLP is when there are a large number of zeros in the derivatives of the functions.

Sparse NLP problems are easy to solve using known NLP solving algorithms, specifi-

cally SNOPT. This means that direct methods large size are not necessarily an issue

and can still lead to effective solving of optimal control problems. NLP solvers are

even easier to solve than the Hamiltonian Boundary Value Problem used in indirect

methods leading to a larger radius of convergence.

The other major issue with direct collocation is costates are not found. As dis-

cussed earlier, this prevents gaining insight into the problem and determining close-

ness to optimality. If more accurate solutions are desired, the results for indirect

optimization will be more accurate than those from direct optimization.

2.10.4 Pseudospectral Optimization

Interestingly, pseudospectral optimization methods allow for the convenience of

direct methods, but also incorporate accurately approximating the costates. With

an approximation of the costates, the closeness of the optimization can be deter-

mined, which also provides one of the major benefits of indirect methods. In essence,

pseudospectral methods are direct methods that have approximations of the added
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information found from indirect methods [7].

In short, pseudospectral optimization involves determining the location of collo-

cation points and then discretizing the problem. The following description of pseu-

dospectral optimization follows that provided by Rao [7]. Before selecting where to

place the collocation points, the proper discretization scheme needs to be determined.

If the points are placed improperly, accurately approximating the optimal trajectory

might be difficult. The first value considered in the discretization is the cost function.

To find the cost function, an integral must be approximated at discretized points.

To do this accurately, a numerical quadrature is introduced. A numerical quadrature

is the approximation of an integral of a function. To approximate the integral, the

function is sampled at certain support points within the interval. To get an accurate

representation, these points must be weighted. The discrete approximation is given

as

∫ +1

−1
f(τ)dτ =

N∑
i=1

wif(τi), (2.104)

where f is the function that is being approximated, N is the number of support

points, wi is the weight of each of these points, and τi is time where the support

points are located.

The method to space these points has an effect on the convergence of the function

to lower-order polynomials. For example, if evenly space points were used, there may

be poor convergence of the integral and a polynomial of a high degree would have to

be used for the approximation. Alternatively, if Gaussian quadrature points are used

as the support points, there is in as exponential convergence for smooth functions

[7], which is the “spectral” convergence in pseudospectral methods. The three most

common Gaussian quadrature approximations are Legendre-Gauss (LG), Legendre-

Gauss-Radau (LGR), and Legendre-Gauss-Lobatto (LGL) [8]. These methods are
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distinguished by their weighting and their inclusion of endpoints. Each form of the

Gaussian quadrature has a different weighting associated with it. For example, the

weight of LGR has the following formula:

w1 =
2

N2
(2.105)

wi =
1

(1− τi) ˙P 2
N1

(τi)
, i = 2 . . . N (2.106)

LG methods do not include either endpoint, LGR methods only include one end-

point, and LGL methods include both endpoints. This is best summarized in Fig.

2.18.

Figure 2.18. Difference between Guassian Quadrature points methods (Adapted from
Rao [7])
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The Gaussian quadrature points will be used as the spacing for the collocation

points, since they will allow for the cost function to be approximated via a Gauss

Quadrature. The Gaussian Quadrature points are determined from the roots of a

Legendre polynomial or some linear combination of Legendre polynomials and its

derivatives [8]. The roots of each method is listed below for an Nth degree Legendre

polynomial given as [8]

PN =
1

2NN !

dN

dτN
[
τ 2 − 1

]N
(2.107)

• LG: Roots of PN(τ)

• LGR: Roots of PN(τ) + PN−1(τ)

• LGL: Roots of ṖN−1(τ) together with τ = −1 and τ = +1.

This form of collocation is sometimes referred to as orthogonal collocation since

Legendre polynomials are orthogonal [8].

Each method of selecting collocation becomes an exact approximation when cer-

tain degrees of polynomial are used. For example, LGR quadrature is exact when the

polynomial used is of degree 2N −2 or less, where N is the number of support points.

However, all the methods become exact within 2 degrees of polynomial of each other,

so they are all extremely accurate [7].

Now that the location of the support points and how to approximate the cost

function has been determined, collocation can occur. The state ~x(τ) can be shown as

~x(τ) ≈ ~X(τ) =
N∑
i=0

~X(τi)Li(τ) (2.108)

Approximations are generally done with polynomials [7]. Although any polyno-

mial can be used, Lagrange interpolating polynomials have beneficial characteristics.
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A basis of N Lagrange polynomials will be constructed of degree N − 1

Li(t) =
N∏

k=1;k 6=i

t− tk
ti − tk

(for = 1, . . . , N). (2.109)

Lagrange polynomials satisfy the isolation property [7],[8]

Li(tk) =


1, i = k

0, i 6= k

. (2.110)

It should be noted that if global collocation is inadequate (this could be due to

discontinuities, like impulsive burns, or rapidly changing dynamics [7]), then it can

be divided into subintervals, called phases, and global collocation can be performed

over each phase [8]. A “linkage constraint” will need to be included between each

phase to ensure continuity [8]. Figure 2.19 gives an example of how the multi-phase

problem is divided along with linkage constraints between each subinterval.
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Figure 2.19. Linkage between Phases in Multi-Phase Collocation (Adapted from Rao
et al. [8])

2.11 GPOPS

The optimization techniques described in Section 2.10.4 are implemented in GPOPS.

GPOPS is software used in matrix laboratory (MATLAB) that is meant to solve

general nonlinear optimal control problems [38]. Specifically, GPOPS utilizes pseu-

dospectral direct collocation methods with a quadrature method of LGR [39]. After

the problem has been discretized, GPOPS approximates the first and second deriva-

tives and plugs them into the derivative matrix to be solved by the NLP solvers [39].

The software gives a choice between using SNOPT and IPOPT to solve the NLP

problem. While the program has the option of dividing the problem into multiple-

phases, this feature goes unused in this research since the problem is not set-up for

multiple phases.

One of the interesting features of GPOPS is the way the mesh points are defined.

65



A mesh is the division of a segment into pieces. The number of mesh intervals in

a problem is dependent on the dynamics and control used in the specific scenario.

GPOPS uses a method called hp-adaptive mesh. To understand hp-adaptive mesh,

a short background of other meshes is important. The original method used was

called h-method, which is a Euler or Runge-Kutta method. The key feature of the

h-method is the same fixed-degree polynomial is used in each mesh interval. This

means that convergence has to come from increasing the number of mesh points or

adjusting their placement [39].

The next method that came along is Gaussian quadrature orthogonal collocation.

This method is described in detail in Section 2.10.4. Gaussian quadrature orthogo-

nal collocation originally utilized the p-method using a single interval. This meant

convergence occurred by increasing the degree of the polynomial approximation [39].

GPOPS utilizes a combination of these methods called hp-adaptive Gaussian

quadrature collocation. In this method, both the number of mesh intervals and

the degree of the approximating polynomials within each mesh interval are adapted.

The major benefit of combining the two methods is it takes advantage of exponential

convergence in smooth regions and increases mesh points in areas with discontinuities

[39].

2.12 Literature Review of Relevant Works

The main body of work relevant to the current research deal with using direct

collocation methods to find optimal trajectories in the CR3BP. Through a review of

current research, it was found that the vast majority of the topics also happen to deal

with low-thrust transfers, as opposed to impulsive. There are many bodies of work on

general optimization of low-thrust trajectories in the CR3BP. Zhang and Zao provide

a minimum-fuel low thrust trajectory design in the Earth-Moon CR3BP using an
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indirect approach and solving the Two-Point Boundary Value Problem (TPBVP) with

a shooting method [21]. Ozimek and Howell use hybrid optimization to determine low-

thrust transfers in the Earth-Moon CR3BP. Optimal control theory is used to produce

a parametrized control law, which is then solved using both a single and multiple-

shooting direct method [40]. Stuart et al. also use a hybrid approach to finding

optimal minimum propellant trajectories for a tour of Jupiter’s Trojan asteroids [41].

There is also a vast body of work dealing with direct methods of solving for

minimum-fuel optimal trajectories in the CR3BP. A multiple shooting differential

corrections method is used to construct complex orbit chains and periodic orbits

in [5]. However, collocation has been an area of prominent recent research in the

CR3BP, including pseudospectral methods [42, 43]. Grebow et al. utilize a seventh-

degree Gauss-Lobatto collocation scheme to approximate a low-thrust trajectory to

perform a lunar pole-sitter mission in [44, 45]. Mingotti et al. search for optimal

transfers to Earth-moon halo orbits by parametrizing the manifolds of the Halo Or-

bits and targeting the parametrized manifolds in a direct collocation scheme [46].

Minimum-fuel optimal low-thrust trajectories in the CR3BP are found in [47] with

two optimization schemes: Legendre psuedospectral and Hermite-Simpson. The ro-

bustness of the collocation scheme to poor initial guesses was noted in [47], but did

not utilize automatic mesh-refinement schemes.

Despite the robustness of the collocation schemes, there is a large amount of

current work evaluating different initial guesses. Pritchett et al. used a method of

“trajectory stacking” where both the initial and starting orbit are propagated for sev-

eral revolutions and then the states of both orbits are concatenated, even if the states

do not align [43]. The “trajectory stacking” method was designed to require little

intuition for the problem, but [43] noted that some scenarios may require more accu-

rate initial guesses. Pritchett et al. also found that after a single optimal trajectory
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has been found, the optimal trajectory can be used as the initial guess to develop

a family of orbit, where only one parameter, such as thrust level, is changed [43].

Anderson and Lo noted that the invariant manifold may be useful in developing an

initial guess, since optimal trajectories across energy levels appear to follow the same

types of paths as the invariant manifold [48]. Furthermore, Parker et al. demonstrate

that a spacecraft requires substantially less ∆v to perform single-maneuver transfers

if the transfers are near heteroclinic connections in the corresponding phase space [5].

Research on low-thrust optimal trajectories in the CR3BP has delved into collo-

cation schemes, but has not fully evaluated the usefulness of a direct pseudospectral

method with an adaptive mesh-refinement scheme, specifically as it applies to objec-

tive functions that do not deal with minimum-fuel. Evaluating the efficacy of a di-

rect pseudospectral method with an adaptive mesh-refinement scheme in the CR3BP

would be beneficial to allow a more variety of circumstances to be evaluated using

a collocation scheme. Additionally, initial guesses are of particular interest in the

relevant research and an inherent problem for optimal control. While collocation

schemes appear to be robust in some scenarios, many relevant works noted that a

better initial guess would be useful in ensuring the collocation scheme can be applied

to other scenarios. The literature suggests invariant manifolds and heteroclinic con-

nections seem to be useful initial guesses that could potentially expand to a large

range of scenarios. Determining the usefulness of the heteroclinic connection as an

initial guess in comparison with other initial guess could allow the usefulness of col-

location schemes to be expanded to further situations. To the extent of this author’s

knowledge, an evaluation of the efficacy of a direct pseudospectral method with an

adaptive mesh-refinement scheme in a scenario dealing with a compound objective

function with both minimum-fuel and minimum-time has not been investigated. The

current research will also analyze the effectiveness of several initial guesses, including
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the heteroclinic connection, on the resulting optimal trajectories.
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III. Research Methodology

3.1 Chapter Overview

The test plan is developed in this chapter to evaluate the efficacy of the pseu-

dospectral method. The specific configuration used for analysis is defined in this

chapter by discussing the selected parameters used in the research and introducing

the equations of motion (EOMs) with the control form and scaling included. The

initial guesses used in the pseudospectral method are developed, specifically the gen-

eration of a heteroclinic trajectory. Finally, the Two-Body Problem (2BP) benchmark

is introduced to allow the optimal trajectories in the Circular-Restricted Three-Body

Problem (CR3BP) to be compared to a nominal scenario.

The current investigation utilizes MATLAB® version 9.0.0.341360 (R2016a). The

optimization software is General Purpose Optimal Control Software (GPOPS) Version

2.3. All simulations were performed on a Windows 10 computer operating with an

Intel® Xeon® Central Processing Unit E3-1245 v3 @ 3.50 GHZ with 32 GB of RAM.

3.2 Test Plan Overview

The test plan is intended to test multiple facets of the employed direct pseudospec-

tral method. The first step in this process is verifying the pseudospectral method

works by comparing the output from the pseudospectral method to a known result.

The heteroclinic trajectory is the known minimum-fuel solution in the CR3BP. By

providing the heteroclinic trajectory as the initial guess, the pseudospectral method

should converge on the heteroclinic trajectory, since the heteroclinic trajectory is the

minimum-fuel solution.

The next steps in the process will be evaluating the pseudospectral method in a

variety of scenarios in the CR3BP. This evaluation will require testing different initial
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guesses, testing “nearby” trajectories, applying a compound objective functional, and

comparing the results to a 2BP benchmark.

The initial guesses used in the current research are found in Section 3.5. The

two initial guesses utilized will be called the minimum-fuel initial guess, which is a

heteroclinic trajectory, and a minimum-time-initial guess. For details on the initial

guesses, see Section 3.5.

“Nearby” trajectories will be evaluated to determine the robustness of the pseu-

dospectral method. Initial guesses from the original orbits will be used to determine

if the pseudospectral method is robust enough to find an optimal result. “Nearby”

trajectories are discussed in detail in Section 3.6.

A compound objective functional is an objective functional that takes the form

J = αf1 + (1− α)f2 (3.1)

where f1 and f2 are different functions and α ∈ [0, 1] is the balance of each function. In

the current research, f1 and f2 will be functions that represent the minimum-fuel and

minimum-time, respectively. The compound objective function is discussed in detail

in Section 3.7. The compound objective functional will also test the robustness of

the pseudospectral method as the balance of the functions within the cost functional

change.

Finally, the results of the pseudospectral method in the CR3BP will be compared

to a 2BP benchmark to determine the benefits of analysis in the CR3BP and to ensure

the results from the pseudospectral method are reasonable. The 2BP benchmark is

discussed in Section 3.8. A summary of the specific tests to be run are given in Table

3.1.
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Table 3.1. Test Plan Overview

Test Initial Guess α in Objective Function Orbit

1 Min-Fuel (Heteroclinic Trajectory) α = 0 Original

2 Min-Fuel (Heteroclinic Trajectory) α = 0 Nearby

3 Min-Fuel (Heteroclinic Trajectory) varies Original

4 Min-Time varies Original

5 Min-Fuel (Heteroclinic Trajectory) varies Nearby

6 Min-Time varies Nearby

3.3 Selection of Parameters

An important decision in the research was the parameters used to characterize the

satellite’s thruster performance. Low-thrust capabilities are suited for the CR3BP en-

vironment because low-thrust requires a long time period to accelerate and is therefore

better suited for missions of longer length [49], The heteroclinic trajectories in the

CR3BP are low-fuel trajectories at the expense of longer time of flights, which is

similar to the advantages for low-thrust capabilities. This makes the low-thrust ca-

pabilities and the CR3BP well-suited problems to combine. The specific impulse,

Isp, was selected to provide an exhaust velocity that is typical of electrostatic and

electromagnetic vehicles [49]. The exhaust velocity, c, is equal to the thruster specific

impulse multiplied by the gravitational acceleration at sea level, g0 [21] as follows

c = Ispg0. (3.2)

To characterize the satellite’s thruster, a thrust level must be selected. In electric

propulsion, the value of the thrust is usually low, between 0.005 N to 1 N [49]. The

current research allows the thrust to change with a throttle, but a maximum thrust
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must be defined as seen in Table 3.2.

Finally, the mass of the spacecraft must be defined. The mass of the spacecraft

will affect how fast the spacecraft can accelerate. The mass was selected to be 1500

kg. The value of the specific impulse, thrust, and mass in the current research are

summarized in Table 3.2.

Table 3.2. Selected Parameter Values

Parameter Symbol Selected Value

Specific Impulse Isp 3000 s

Gravitational Acceleration at Sea Level g0 9.80665 m/s2

Max Thrust Tmax 1 N

Satellite Mass m 1500 kg

3.4 Equations of Motion

While the EOMs are defined for the CR3BP in Section 2.3.2, the specific form

of the equations must be formulated to incorporate outside factors, such as problem

scaling, control input, and mass loss. The way outside factors are incorporated into

the optimal control problem can affect the rate of convergence and the ability for the

optimization problem to be solved.

To begin this process, the method to incorporate the control into the equation of

motion was evaluated. Section 2.2.1, shows how outside accelerations can be incor-

porated into the motion as a perturbation as long as they satisfy the fundamental

assumption of perturbation theory. Continuous low-thrust can be accounted for as a

perturbation in the CR3BP, since it is assumed to be a small effect, which obeys the

fundamental assumption of perturbation theory.

The form that the control input takes is also an important aspect of setting up

the EOMs. In the current research, the problem has been simplified to a planar
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problem, so the control only has two-dimensions, x and y. The first form of the

control attempted to write the control as an angle α as seen in Fig. 3.1.

Figure 3.1. Form of the Control as an Angle α

This meant the control only had one parameter

u = α, (3.3)

where α ∈ [0, 2π].

The EOMs took the form

ẍ = 2ẏ + x− (1− µ)(x+ µ)

r31
− µ(x− 1 + µ)

r32
+
Tmax
m

cos(α) (3.4)

ÿ = −2ẋ+ y − (1− µ)y

r31
− µy

r32
+
Tmax
m

sin(α), (3.5)
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where Tmax is the maximum thrust magnitude and m is the mass of the spacecraft.

The form of the control in Eq. (3.3) seemed the easiest form to utilize, since there is

only one control parameter, which reduced the required number of parameters to solve

the problem. In practice, this control form’s main issue was the thrust magnitude

could not be reduced, so the control always had to have the thrusters continually

burning. This made it difficult to arrive at the selected final state because the control

would constantly flip directions as the spacecraft approached the end of the trajectory

to try and slow the motion of the spacecraft.

To counteract this issue, the control was changed to incorporate a control compo-

nent in the x- and y- direction as follows

~u =

 ux

uy

 , (3.6)

where ux and uy ∈ [0, 1]. The control can be seen in Fig. 3.2.
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Figure 3.2. Form of the Control in the x- and y-direction

To ensure the magnitude of the control stayed between [0, 1], a path constraint

was introduced to force the magnitude of the control to always be less than or equal

to 1 as follows

√
u2x + u2y ≤ 1. (3.7)

The EOMs for the control in Eq. (3.6) are written as

ẍ = 2ẏ + x− (1− µ)(x+ µ)

r31
− µ(x− 1 + µ)

r32
+
Tmax
m

ux (3.8)

ÿ = −2ẋ+ y − (1− µ)y

r31
− µy

r32
+
Tmax
m

uy. (3.9)

The new control in Eq. (3.6) was intended to allow the magnitude of the thrusters
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on the spacecraft to be reduced. Thus, the thrusters would not have to constantly

be going full throttle. However, the pseudospectral method did not converge in some

scenarios. This is potentially due to the path constraint on the control. A final form

of the control was found by Zhang [21]. Rather than incorporate the throttle as a path

constraint, the problem was solved by adding the throttle directly into the control as

follows

~u =


ux

uy

γ

 , (3.10)

where γ ∈ [0, 1] is the throttle. This form of the control is the same as in Fig. 3.2

with γ equal to the length of the thrust vector.

This made the EOMs

ẍ = 2ẏ + x− (1− µ)(x+ µ)

r31
− µ(x− 1 + µ)

r32
+ γ

Tmax
m

ux (3.11)

ÿ = −2ẋ+ y − (1− µ)y

r31
− µy

r32
+ γ

Tmax
m

uy. (3.12)

The advantage to the control taking the form in Eq. (3.10), is the control form

removes the path constraint and also allows the throttle to be used as a metric

for calculating mass loss in an objective function for minimum-fuel optimal control

problems. A final equation is included to account for mass loss. Some authors, such

as Caillau, decided against incorporating mass loss into the EOMs assuming mass

loss to be negligible [50]. Others, such as Zhang, determined the mass loss will affect

the acceleration of the spacecraft and produce a different trajectory [21]. The EOMs

for mass loss is taken from [21] and is given as
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ṁ = −γTmax
c

, (3.13)

where c is the exhaust velocity. The exhaust velocity can be calculated as c = Ispg0.

Equations (3.11) - (3.13) make up the EOMs used in the current research with

the control being of the form given in Eq. (3.10). However, the EOMs still need to

be scaled to be effectively utilized.

The final issue dealt with in developing the EOMs is the scaling of the problem.

In direct optimal control it is important to keep values scaled to relatively the same

order of magnitude and the closer to the order of O(1) is beneficial. By scaling in

to the O(1), higher order terms do not make lower order terms insignificant. Most

of the terms in Eq. (3.11) and (3.12) are already nondimensionalized as seen in

Section 2.3.1 and remain relatively close to being of O(1). However, Tmax

m
is not

nondimensionalized, meaning the value could affect the scaling of the problem.

The unscaled version of Eq. (3.11)-(3.13) were evaluated and were only capable

of converging on solutions where there was a high Tmax, or when no control was

needed, such as in the case of finding a heteroclinic connection. To resolve this issue,

Tmax

m
was nondimensionalized to match the scaling of the CR3BP. Since Tmax has

units of Newtons and m has units of kg, the entire term Tmax

m
has units of m/s2. To

nondimensionalize Tmax

m
, the characteristic quantities l∗ and t∗ were used as follows

ẍ = 2ẏ + x− (1− µ)(x+ µ)

r31
− µ(x− 1 + µ)

r32
+ γ

Tmax
m

t∗
2

c1
ux (3.14)

ÿ = −2ẋ+ y − (1− µ)y

r31
− µy

r32
+ γ

Tmax
m

t∗
2

c1
uy. (3.15)

where c1 = 1000l∗. The characteristic length l∗ is multiplied by 1000 to convert it

from units of km to m. By performing this nondimensionalization, all terms in Eq.
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(3.14) and (3.15) have units of the same order of magnitude.

Equation (3.13) still needs to be scaled to the nondimensionalized units of the

CR3BP. Even though ṁ has units of kg/s, getting rid of the kg is not necessary and

would actually affect Eq. (3.14) and (3.15) due to the fact that mass was assumed to

have units of kg. Therefore, Eq. (3.13) only needs to have the time nondimensional-

ized by using the characteristic time t∗ as follows

ṁ = −γTmax
c

t∗. (3.16)

Equations (3.14) - (3.16) represent the dynamics used in the current research.

They are nondimensionalized properly so that all the necessary terms remain near

O(1).

3.5 Initial Guess in GPOPS

Direct pseudospectral methods require an initial guess. The accuracy required

of the initial guess differs between optimization methods as some methods are more

robust to initial guesses than others. However, a more accurate initial guess can help

converge on an accurate solution. Insight into the CR3BP helps attain an accurate

initial guess that can be beneficial in evaluating the pseudospectral method. A het-

eroclinic connection was described in Section 2.8 as a “free” transfer between two

periodic orbits. Since the heteroclinic connection is a “free” transfer, it is a known

minimum-fuel solution and makes a good initial guess to use for a minimum-fuel

trajectory.

The details behind finding a heteroclinic connection are explained in Sections

2.6-2.8, and are summarized here for completion. To begin the process of finding a

heteroclinic connection, the initial and final periodic orbit must be selected. These

orbits can be between any locations in the CR3BP, but are required to be the same
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Jacobi constant. The orbits chosen for the current research were taken to match the

orbits from [5]. The two orbits selected are an orbit about the L1 libration point in

the Earth-Moon system and a Distant Prograde Orbit (DPO) about the Moon. The

initial conditions used for for the two orbits is given in Table 3.3. Both of these orbits

have a Jacobi constant of 3.1331.

Table 3.3. Initial Conditions for L1 Periodic Orbit and DPO

L1 Periodic Orbit DPO

x (DU) 0.812255 1.061692

y (DU) 0 0

ẋ (DU/TU) 0 0

ẏ (DU/TU) 0.248312 0.403877

Using differential corrections described in Section 2.6.2 and the initial conditions

from Table 3.3, periodic orbits are generated. A zoomed in version of the L1 periodic

orbit and the DPO can be seen in Fig. 3.3. Since the L1 periodic orbit and the DPO

orbit will be used throughout the current research, a view of the orbits in the entire

CR3BP synodic reference frame is shown in Fig. 3.4. The orbits are also shown in

the inertial are in Fig. 3.5. The L1 Periodic Orbit is the starting orbit, while the

DPO is the ending orbit.

80



Figure 3.3. Periodic Orbits in the CR3BP

Figure 3.4. Periodic Orbits in the Entire CR3BP Synodic Reference Frame
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Figure 3.5. Periodic Orbits in the Inertial Reference Frame

With the periodic orbits selected, the invariant manifolds associated with the

orbits must be propagated. As discussed in Section 2.7, the orbit is perturbed in

the direction of the stable or unstable eigenvector at selected points around the orbit.

This creates a manifold tube as seen in Fig. 3.6. The manifold shown in Fig. 3.6 is the

unstable manifold of the L1 periodic orbit perturbed in the direction of the unstable

eigenvector in both the positive and negative direction. The negative direction is only

propagated to the surface of section and is thus only shown on Fig. 3.6 at values of

x > 0.8.
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Figure 3.6. L1 Periodic Orbit Unstable Manifold from Perturbations in both the Posi-
tive and Negative Direction

The manifold tube will need to be created for both the L1 periodic orbit and the

DPO. However, since the L1 periodic orbit is the starting orbit, only the unstable

manifold needs to be found as unstable manifolds depart from the orbit. Similarly,

the DPO is the final orbit and only needs to have the stable manifold propagated.

When a connection is found between the unstable manifold of the L1 periodic orbit

and the stable manifold of the DPO, a spacecraft traveling from the L1 periodic orbit

along the unstable manifold will be able to transfer to the stable manifold and arrive

at the DPO.

To find a connection between manifolds, a surface of section is chosen at a selected

x-value. In the current research, the surface of section is chosen at x = 0.890940 to
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match the value chosen in [5]. A surface of section is discussed in Section 2.8. The

manifolds are propagated until they intersect this surface. The L1 periodic orbit

manifolds in Fig. 3.6 only need to be propagated in the direction of the negative

perturbation to intersect the surface of section. The propagation of the stable and

unstable manifolds to the surface of section can be seen in Fig. 3.7.

Figure 3.7. Unstable and Stable Manifolds Propagated until Intersection with the
Surface of Section

At the intersection of the surface of section, the manifolds are guaranteed to have

the same x-value. Two of the three remaining states must be chosen to be plotted on

a Poincaré map as described in Section 2.8. A two-sided Poincaré map is utilized to

show the intersection of the manifolds from either direction. The two states selected

to be plotted on the Poincaré map are y and ẏ. The Poincaré map from the periodic
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orbits can be seen in Fig. 3.8. Each point on the map represents the y- and ẏ-values

of a single manifold as it intersects the surface of section.

Figure 3.8. Poincaré Map Showing the Intersection Point between the stable and
Unstable Manifold

Any points on the Poincaré map that overlap guarantee that the stable and unsta-

ble manifold intersecting the surface of section at that point have the same state. The

x-values are the same due to being on the surface of section; the y- and ẏ-values are

the same due to intersecting on the Poincaré map; and the ẋ-values are guaranteed

to be aligned due to the orbits having a shared Jacobi constant. Since all the values

of the state are the same, a heteroclinic connection has been found. The closest point

from the stable and unstable manifold on the Poincaré map in Fig. 3.8 is labeled as

the intersection point. There are many points that are close to overlapping, and any
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of these points could be labeled as a heteroclinic connection depending on the defined

tolerance. The point selected as the heteroclinic connection in the current research

was the point where two manifolds were the closest out of all the intersection with the

surface of section. After, finding the heteroclinic connection, the unstable and stable

manifold that intersected on the Poincaré map are the manifolds that comprise the

heteroclinic trajectory. The heteroclinic trajectory is seen in Fig. 3.9.

Figure 3.9. The Heteroclinic Trajectory Found between the L1 Periodic Orbit and the
DPO

The heteroclinic trajectory is a “free” transfer from the L1 periodic orbit to the

DPO. Since the heteroclinic trajectory is the known minimum-fuel trajectory, it is

used as the initial guess for the optimal control problem. The heteroclinic connection

only found the required states needed for the optimal control problem, so the control
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initial guess still needs to be defined. Since this is the min-fuel solution, there should

be minimal throttle from the control, γ. The direction of the control, ux and uy, in the

initial guess does not matter, since there is minimal throttle. Therefore, the throttle

in the control, γ, is assigned to be zero for the entire trajectory and the direction of

the control, ux and uy, are arbitrarily assigned, since ux and uy will have negligible

impact on the resulting trajectory.

There are two initial guesses used in the current research. The first initial guess

is the heteroclinic trajectory, which will be called the minimum-fuel initial guess.

Another initial guess is also used, but is not found from insight into the CR3BP.

The other initial guess is a resulting trajectory found in the process of applying

a compound objective functional to balance the weights of minimum-time versus

minimum-fuel. The best way to describe this initial guess is the minimum-time so-

lution for transfer between the periodic orbits in Fig. 3.3. Since this initial guess

cannot be derived from insight into the CR3BP, the initial guess will be introduced

in the results section. The second initial guess will be called the minimum-time initial

guess. There are now two initial guesses: the minimum-fuel initial guess, which is a

heteroclinic trajectory, and a minimum-time initial guess. Other initial guesses were

attempted, such as using an iterative process, where the previous result is used as the

next initial guess. However, the iterative initial guess was problematic due to issues

with a single orbit arriving at a local minimum and causing all successive orbits to

also arrive at a local minimum or failing to converge altogether. Thus, the iterative

initial guess was no longer utilized as an initial guess, leaving only the minimum-fuel

and the minimum-time initial guesses.
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3.6 Continuation Method

In Section 3.5, the initial conditions for the L1 Periodic Orbit and the DPO are

given. However, these are not the only two orbit evaluated in the current research.

Orbits “nearby” to the original L1 Periodic orbit are also analyzed. All “nearby”

orbits are in the same family of orbits as the original L1 periodic orbit and each

“nearby” orbit has a different Jacobi constant. In the current research, “nearby”

orbits are defined as within 0.0307 DU or 11,784 km of the original orbit. This

distance is slightly smaller than the diameter of the Earth. The distance was selected

because the L1 periodic orbits in Fig. 3.10 begin to significantly overlap the DPO

beyond this distance.

To find the nearby orbits, a continuation method was used. A continuation method

calculates a family of orbits by varying the initial state of a previous periodic orbit

slightly in a certain direction and performing the differential corrections on the new

initial conditions [4]. This process can be iterated for multiple orbits to develop a

family of orbits. In the current research, the original orbit is varied by ∆x, such that

the new state is ~X = [x + ∆x, y, z, ẋ, ẏ, ż]T . This process is iterated until changing

the ∆x moves the orbit outside 0.0307 DU from the original orbit. The continuation

method and the “nearby” orbits used in this thesis are shown in Fig. 3.10.
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Figure 3.10. The Family of Orbits Produced from the Continuation Method

3.7 Objective Functions

The objective function in the current research is actually a compound objective

functional. The form of the compound objective functional is given in Eq. (3.1). The

compound objective functional allows different weights to balance the cost functional

between two functions. In the current research, the two functions being balanced are

fuel and time.

The minimum-fuel cost function is defined as

J =
Tmax
c

∫ tf

t0

γdt (3.17)
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and the minimum-time cost function is defined as

J =

∫ tf

t0

dt. (3.18)

To combine Eq. (3.17) and (3.18) into one compound objective functional, a

weighting factor, α, must be introduced. α will determine if the compound objective

functional is balanced toward minimum-fuel or minimum-time. Since the Tmax

c
in Eq.

(3.17) will affect the weighting in the problem, Tmax

c
will be removed since it is simply

multiplying the minimum-fuel cost function by a constant. The compound objective

functional then becomes

J =

∫ tf

t0

[α + (1− α)γ] dt. (3.19)

The compound objective functional can be varied to balance between minimum-

fuel and minimum-time by changing the value of α. If α = 0, then the compound

objective functional is the minimum-fuel solution. If α = 1, then the compound

objective functional is the minimum-time solution. This compound objective func-

tional can be used to evaluate the trade-off between minimum-fuel trajectories and

minimum-time trajectories.

3.8 2BP Benchmark

In Section 3.2, a 2BP comparison was listed as part of the test plan. The most basic

Three-Body Problem (3BP) comparison is the optimal maneuver between two circular

orbits using an impulsive maneuver, called a Hohmann Transfer [2]. A Hohmann

transfer is performed by making two impulsive burns in the trajectory. The first

burn occurs to take the spacecraft out of the starting circular orbit and place the

spacecraft on an elliptical transfer orbit. The second burn is used to re-circularize
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the orbit upon arriving at the second orbit. Since the orbits used in the current

research are not circular when converted to the 2BP, an exact comparison between

trajectories in the 2BP and the CR3BP is difficult. To simplify the comparison, two

circular orbits will be used in the analysis. This basic approximation will at least be

able to demonstrate if the CR3BP trajectories are generally performing better than

the 2BP trajectories.

The circular orbits used in the approximation will be the location of the L1 point

and the location of Moon when these locations are converted to an Earth-Centered

Inertial (ECI) reference frame. The process for converting from the synodic reference

frame to the ECI frame is described in Section 2.3.3.As seen in Fig. 3.5, the L1 orbit

and the moon’s orbit in the inertial frame are approximately equivalent to the L1

periodic orbit and the DPO used in the current research.

To calculate the ∆v required to perform the Hohmann transfer, the following

equation is used [2]

∆v = ∆v1 + ∆v2 (3.20)

where

∆v1 =

√
2µ

r1
− 2µ

r1 + r2
−
√
µ

r1
(3.21)

and

∆v2 =

√
µ

r2
−
√

2µ

r2
− 2µ

r1 + r2
. (3.22)

Equation (3.21) shows that ∆v1 is the first burn to put the spacecraft on the

transfer trajectory and Eq. (3.22) shows that ∆v2 is the second burn to re-circularize

the orbit at the final orbit. The distances r1 and r2 are the radius of the first and
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second circular orbits, respectively, and µ is the gravitational parameter for the two-

body problem, which is different from the µ used in the CR3BP.

Transfer time is also an important comparison metric used in the current research.

For a Hohmann transfer, the transfer time is [2]

∆t = π

√
(r1 + r2)3

8µ
(3.23)

3.9 Summary

Chapter 3 discussed the research methodology used in the current research. A

test plan was introduced to describe the scenarios that will be used to analyze the

pseudospectral method. The parameters, EOMs, and controls specific to the current

research were established. An initial guess was generated by finding a heteroclinic

trajectory. Finally, the ”nearby“ periodic orbits, the compound objective functional,

and a 2BP benchmark were presented.
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IV. Results

4.1 Chapter Overview

Chapter 4 performs the test plan developed in Section 3.2. First, the heteroclinic

connection will be given as an initial guess to validate that the pseudospectral method

can find a known minimum-fuel solution in the Circular-Restricted Three-Body Prob-

lem (CR3BP). The research will then examine the robustness of the pseudospectral

method for “nearby” periodic orbits using the heteroclinic initial guess. Finally, a

compound objective functional will examine the balance of min-time and min-fuel for

the original periodic orbit and “nearby” periodic orbits. An evaluation of the initial

guess and the pseudospectral method will be provided based on the results from the

tests.

4.2 Heteroclinic Trajectory in General Purpose Optimal Control Soft-

ware (GPOPS)

A heteroclinic trajectory is the known minimum-fuel result for the transfer be-

tween two periodic orbits of the same Jacobi Constant. As an initial test, the pseu-

dospectral method was given the heteroclinic connection as an initial guess and the

objective function was set to find the minimum-fuel solution. The result is shown in

Fig. 4.1.
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Figure 4.1. Heteroclinic Connection Found by Pseudospectral Method in GPOPS

As expected, the pseudospectral method successfully converges on the heteroclinic

trajectory when solving for the minimum-fuel. While the convergence on the hetero-

clinic trajectory helps to validate the initial guess in GPOPS, the resulting control

and Hamiltonian are also important to examine. The throttle in the control should be

essentially zero since almost no ∆v should be expended for a heteroclinic trajectory.

There should also be negligible mass loss since the heterolcinic trajectory is a “free”

transfer. Therefore, the Hamiltonian should be constant because the cost function

and equations of motion (EOMs) do not explicitly contain time when mass loss is

negligible. The control and Hamiltonian are shown in Fig. 4.2 for the minimum-fuel

trajectory found by GPOPS in Fig. 4.1.
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Figure 4.2. Control and Hamiltonian for the Heteroclinic Connection Found by GPOPS

In Fig. 4.2, the control and Hamiltonian are all of the order 10−4. Thus, the

control is practically zero and the Hamiltonian is very close to constant. The ∆v

expended in this maneuver is 0.8677 m/s, which is also very low. This demonstrates

that the pseudospectral method used in GPOPS effectively determined the min-fuel

solution when provided with an accurate initial guess. Further analysis will be done

in the current research to determine the robustness of the pseudospectral method in

the CR3BP.

4.3 Nearby Periodic Orbits

Determining the ability for the pseudospectral method to converge on an accurate

optimal solution in different scenarios is important to evaluate the pseudospectral
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method’s robustness. The ability of the pseudospectral method to converge on an

optimal solution can also be improved by providing an accurate guess. Thus, deter-

mining if the heteroclinic trajectory can be used as an initial guess for other scenarios,

such as “nearby” orbits, will provide a valuable insight into effective initial guesses to

ensure convergence of the pseudospectral method. The “nearby” orbits used in the

current research are described in Section 3.6. Several of the minimum-fuel trajectories

resulting from an initial guess of the heteroclinic connection are shown in Fig. 4.3.

Figure 4.3. Min-Fuel Optimal Trajectories Found by GPOPS for “Nearby” Periodic
Orbits of different Jacobi Constants

Each of the periodic orbits in Fig. 4.3 have different Jacobi constants. If the

required ∆v is compared to to the Jacobi Constant, a close to linear relationship

appears as seen in Fig. 4.4.
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Figure 4.4. Optimal ∆v Found by GPOPS for “Nearby” Periodic Orbits of different
Jacobi Constants

Note that the ∆v increases in either direction when moving away from the Jacobi

constant of the heterolcinic trajectory. This makes intuitive sense because the further

away from the “free” transfer an orbit is, the more expensive a transfer should be.

However, an important aspect of Fig. 4.4 is that not all of the ∆v’s are on the line

that would create a linear relationship. These points likely indicate that the optimal

trajectory for that periodic orbit converged to a local minimum. A global minimum,

or at least a lower local minimum, could likely be found that reduces the ∆v required

to make the transfer. This indicates that while the pseudospectral method being

tested might be robust at converging on a solution, the solution may not be most

optimal solution that could be found. Thus, it is possible that a better initial guess
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may need to be provided to the pseudospectral method.

4.4 Compound Objective Function Initial Guesses

In this section, the compound objective functional

J =

∫ tf

t0

[α + (1− α)γ] dt, (4.1)

introduced in Section 3.7 will be evaluated as the balance between min-fuel and min-

time is tested by varying α between 0 and 1. The balance of min-fuel and min-time

provides a unique scenario for the pseudospectral method to find an optimal solution.

Comparing the balance of min-fuel and min-time will demonstrate the robustness of

the pseudopsectral method. The robustness of the provided initial guesses will also

be evaluated by comparing the outputs in different scenarios.

4.4.1 Compound Objective Functional: Original Periodic Orbit

Varying α from 0 to 1 in the compound objective functional, the optimal control

problem is solved using the heteroclinic trajectory, the minimum-fuel solution, as the

initial guess. The optimal trajectories generated by GPOPS are shown in Fig. 4.5.
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Figure 4.5. Optimal Trajectories Found in GPOPS by varying the balance of α between
Min-Fuel and Min-Time with an initial guess of the heteroclinic trajectory

Figure 4.5 only shows selected trajectories from the varying of α between [0, 1].

Although it cannot be seen in Fig. 4.5, the pseudospectral method converged on the

heteroclinic connection for α = [0, 0.4]. After α = 0.4, the trajectory follows a similar

shape as the heteroclinic trajectory by traversing around the moon before reaching

the final state. However, as α increases, the trajectory passes closer and closer to the

Moon. This can be seen in the trajectories α = 0.45 and α = 0.6 in Fig. 4.5.

An interesting aspect of the pseudospectral method with the adaptive mesh is

the adaptive mesh’s ability to account for rapidly changing dynamics. When the

trajectory at α = 0.6 passes very close by the moon, which is an area of rapidly

changing dynamics. In order for the dynamics to be approximated correctly near the
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moon, many collocation points are used. A large number of collocation points allows

a trajectory to still be found even though the dynamics are changing very rapidly.

Despite the pseudospectral method’s ability to converge on solutions with rapidly

changing dynamics, it is unable to converge at α = 0.65. The balance between min-

fuel and min-time is difficult for the pseudospectral method at this point. At α = 0.6,

the trajectory passes very close to the moon, but still passes around the moon before

ending at the final state, whereas at α = 0.75 a new shape for the trajectory is found,

where the trajectory no longer passes around the moon and, instead, takes a more

direct route to the final state. A bifurcation point appears to exist at α = 0.65,

where the shape of the trajectories change and create a new family of orbits. At

this supposed bifurcation point, not only do the shape of the trajectories change, but

also the required ∆v and time of flight change. At α = 0.6, ∆v = 359.05 m/s and

t = 12.03 days. At α = 0.75, ∆v = 275.16 m/s and t = 8.96 days. The new family of

orbits after α = 0.75 have lower ∆v and time. Since the new family of orbits seems

to have better characteristics, the new family of orbits would be a beneficial initial

guess to reevaluate the balance between min-fuel and min-time. This new family of

orbits could potentially have lower ∆v and transfer time for all α if the pseudospctral

method happened to converge on a local minimum when the heteroclinic connection

was provided as the initial guess. Thus, the min-time solution, when α = 1, was

chosen as the initial guess to rerun the analysis.

With the minimum-time solution as the initial guess for the pseudospectral method,

the optimal trajectories were found again. The optimal trajectories found from the

min-time initial guess are shown in Fig. 4.6.
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Figure 4.6. Optimal Trajectories Found in GPOPS by Varying the balance of α between
Min-Fuel and Min-Time with an Initial Guess of Minimum-Time

The trajectories found from the min-time initial guess shown in Fig. 4.6 appear

to be all of the same family of orbits. All of the orbits from the min-time initial

guess appear to be of the same shape, where the trajectory goes directly to the final

state without passing around the Moon. There also seems to be a consistent trade-off

between required ∆v and transfer time. Both initial guesses results are plotted in

Fig. 4.7 to demonstrate the trade-off between ∆v and transfer time. Values for α are

shown in Fig. 4.7, so the associated trajectory can be seen in Fig. 4.5 and 4.6.
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Figure 4.7. Trade-off between ∆v and Transfer Time for Optimal Trajectories Found
in GPOPS

The most beneficial solutions can be determined as the location where either ∆v

or time must be given up to reach another optimal solution, but not both. These

solutions are called a Pareto Front. As can be seen in Fig. 4.7, the min-time initial

guess has a consistent trade-off between ∆v and transfer time, whereas the min-fuel

initial guess lacks this structure. The min-time initial guess is more beneficial at each

respective α. Thus, the min-time optimal trajectories lie on the Pareto Front. The

only min-fuel trajectories that lies on the Pareto Front are at α = 0 and for α’s that

are greater than 0.7. The trajectories fround when α > 0.7 for the min-fuel initial

guess happen to be the same trajectories found from the min-time initial guess.

The min-time initial guess effectively finding an optimal solution, while the min-
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fuel initial guess does not, provides insights into what makes a good initial guess for

the pseudospectral method. While the pseudospectral method struggled to converge

at certain values when given the minimum-fuel initial guess, it did not have issues

when given the minimum-time initial guess. The min-time initial guess also resulted

in more globally optimal trajectories for the majority of the values of α. The min-time

solution appears to be the better initial guess for the compound objective function

at all values of α, except for α = 0.

When examining the Pareto Front in Fig. 4.7, the location of a comparable Two-

Body Problem (2BP) transfer needs to be examined. The 2BP results are those of

a Hohmann transfer as described in Section 3.8. The Hohmann transfer was found

to have a ∆v = 79.14 m/s and a transfer time of t = 12.29 m/s. From examining

Fig. 4.7, the Hohmann transfer would not fall on the Pareto Front and would be

a more expensive transfer in both ∆v and transfer time as compared to an optimal

solution on the Pareto Front in the CR3BP. This demonstrates the applicability and

cost savings from exploiting the dynamics of the CR3BP and utilizing continuous

low-thrust. The optimal solutions found from the pseudospectral method are also

shown to be a more optimal solution, then the results from the 2BP.

4.4.2 Compound Objective Functional: Nearby Periodic Orbit

Due to the minimum-time initial guess appearing more robust in the pseudospec-

tral method for the original orbit, it is beneficial to check these results in another

scenario. Thus, the initial guesses are evaluated for a “nearby” orbit. Beginning

with the min-fuel (heteroclinic trajectory) initial guess, the balance of min-fuel and

min-time in the compound objective function is evaluated. The resulting trajectories

can be seen in Fig. 4.8 and 4.9. The optimal trajectories are shown on two images

because many of the trajectories had unique characteristics that could not be seen
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when all the trajectories were on one plot.

Figure 4.8. (1 of 2) Optimal Trajectories Found in GPOPS by Varying the balance of α
between Min-Fuel and Min-Time with an Initial Guess of the Heteroclinic Trajectory
for a “Nearby” Orbit
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Figure 4.9. (2 of 2) Optimal Trajectories Found in GPOPS by Varying the balance of α
between Min-Fuel and Min-Time with an Initial Guess of the Heteroclinic Trajectory
for a “Nearby” Orbit

The min-fuel initial guess appears to converge on optimal trajectories that appear

to be in the same family, where the trajectories make one orbit around the moon

before arriving at the final state. Even though these orbits appear to be of the same

family, optimization failed at several values, α = 0.4, α = 0.75, and α = 1. The reason

for the failed convergence is difficult to determine, but it should be noted that each

trajectory in Fig. 4.8 and 4.9 seemingly differ in form. Thus, the trajectories found

at these particular values of α could have required a maneuver that was too different

from the heteroclinic trajectory to allow the pseudospctral method to converge on a

solution.

Regardless of the failed trajectories, it appears that the optimal trajectories with
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lower values of α attempted to remain on the L1 Nearby Periodic orbit and the Distant

Prograde Orbit (DPO) for as long as possible. The solution at α = 0 seems to have

two noticeable burns: one as the trajectory departs the L1 Nearby Periodic orbit and

one as the trajectory attempts to continue following the DPO at the DPO’s highest

point. Alternatively, the near min-time solution at α = 0.9 departs the L1 Nearby

Periodic orbit immediately, passes nearby by the Moon, and only enters the DPO at

the final state.

The min-time initial guess was also used in the pseudospectral method to de-

termine if the alternative initial guess improved the robustness of the pseudospetral

method in a different scenario. The optimal solution found for the min-time initial

guess is shown in Fig. 4.10.
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Figure 4.10. Optimal Trajectories Found in GPOPS by Varying the balance of α be-
tween Min-Fuel and Min-Time with an Initial Guess of the Min-Time Solution for a
“Nearby” Orbit

Similar to the min-time initial guess in the original orbit, all the trajectories in the

nearby orbit take the same shape by going directly to the final state. The trajectories

for lower values of α follow the L1 “Nearby” Periodic Orbit shape for longer than

higher values of α, but all of the trajectories take the same form. The trade-off

between ∆v and time for both initial guesses is shown in Fig. 4.11.
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Figure 4.11. Trade-off between ∆v and Transfer Time for Optimal Trajectories Found
in GPOPS for a “Nearby” Periodic Orbit

Figure 4.11 shows comparable results to the original orbit. The optimal trajecto-

ries found from the min-time initial guess all lie on the Pareto Front. However, the

optimal trajectories from the min-fuel initial guess also lie on the Pareto front for

α = 0 to around α = 0.4. The min-fuel initial guess trajectories produce a longer

time of flight in exchange for a lower ∆v. Since each of these points cannot improve in

both transfer time and ∆v, the points lie on the Pareto Front. Unlike in the original

orbit, higher values of α for the min-fuel initial guess do not lie on the Pareto Front.

Thus, for higher values for α the min-time initial guess is clearly favored, whereas at

lower values of α the initial guess would depend on whether lower transfer times or

lower ∆v are desired.
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Several other unique trajectories should be noted, such as α = 0.6 and α = 0.95

for the min-fuel initial guess. The values α = 0.6 and α = 0.95 produce slightly

different trajectories than neighboring α values. When examining Fig. 4.11, both of

the values of α have a more optimal solution, where there would be less ∆v expended

for a lower transfer time. These trajectories obviously converged on local minimum.

This demonstrates the importance of a good initial guess on the robustness of the

pseudospectral method.

4.5 Evaluation of Methods used in Current Research

4.5.1 Evaluation of Inclusion of Mass Loss

Several assumptions were made in Chapter 3 that can be evaluated. The first

choice was to incorporate mass lass into the EOMs. This decision was made because

the amount of mass being lost in a trajectory was unknown, so incorporating mass

loss ensured that this factor would be accounted for if the mass loss was not negligible.

Mass loss was also incorporated to check if the results were comparable to reality and

if the maneuvers could actually be performed with the allocated amount of mass.

After completing the results for a compound objective function with the heteroclinic

trajectory as the initial guess in Section 4.4.1, the same analysis was performed,

but with mass assumed to be constant. Table 4.1 gives the values for the min-fuel

(α = 0) and min-time (α = 1) when mass is assumed constant and when mass loss is

incorporated.
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Table 4.1. Resulting Time and ∆v for Constant Mass and Mass Loss

Case α Time (days) ∆v (m/s)

Constant Mass α = 0 (Min-Fuel) 21.934 1.2777

Mass Loss α = 0 (Min-Fuel) 21.934 0.8677

Constant Mass α = 1 (Min-Time) 8.3783 482.59

Mass Loss α = 1 (Min-Time) 8.3600 485.52

From the results from Table 4.1, the inclusion of mass loss does not seem necessary

for the scenarios examined in the current research. The difference in ∆v is negligible

even in in the minimum-time case, which requires much higher ∆v. By including mass

loss, the pseudospectral method had to account for an additional variable. Reducing

the number of variables is beneficial because it reduces the chance of converging on

a local minimum. Mass loss may need to be incorporated in other scenarios where

mass loss is much higher, but for the case presented in the current research, assuming

constant mass would have been recommended.

4.5.2 Evaluation of Utilizing Initial Guess

Throughout the results in Chapter 4, the importance of an initial guess has been

emphasized. The min-fuel initial guess frequently converged on local minimum so-

lutions, whereas the min-time initial guess did not have this issue. The min-time

initial guess was valuable in guaranteeing the pseudospectral method converged on a

at least a more beneficial local minimum than the min-fuel solution. However, there

were certain situations in which the min-fuel initial guess produced an optimal solu-

tion that was on the Pareto Front. Thus, another analysis could benefit from using

a hybrid initial guess scheme, such as using the min-fuel initial guess to develop an

original optimal solution set and then using the minimum-time solution as an initial
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guess to complete the Pareto Front. In the scenario presented in the current research,

the min-fuel initial guess only produced optimal results on the Pareto Front through

α = 0.4 and all of these results required trading higher transfer times for ∆v. If

transfer time is a major concern, then the min-fuel initial guess may not be relevant

and instead the min-time initial guess should be utilized.

Another conclusion concerning initial guesses is that a single initial guess is gen-

erally acceptable to be used as an initial guess in all “nearby” scenarios. By “nearby”

scenarios, it is meant that a single initial guess can be used for “nearby“ orbits and

also for a varying compound objective functional. The heteroclinic connection ini-

tial guess successfully found optimal trajectories for “nearby“ orbits in Section 4.3.

Even though several optimal trajectories converged on local minimum, the majority

of the trajectories converged on advantageous results that allowed a general linear

trend to be noticed. On top of this, the min-time initial guess worked superbly in the

compound objective functional for all values of α. The applicability of a single ini-

tial guess to a variety of scenarios demonstrates the robustness of the pseudospectral

method. The pseudospectral method is capable of converging on an optimal solution

in “nearby” scenarios even with an initial guess that may not be very accurate.

4.5.3 Evaluation of Pseudospectral Method

The selected pseudospectral method utilized an hp-adaptive mesh refinement

scheme. This mesh refinement scheme was important in ensuring the convergence

of the pseudospectral method. As mentioned in Sections 4.4.1 and 4.4.2 the mesh

was refined to ensure that there were enough collocation points to accurately approx-

imate the EOMs in areas of rapidly changing dynamics. Thus, the pseuodpsectral

method was able to converge on solutions even with non-accurate initial guesses in a

variety of scenarios.
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In some situations, the mesh-refinement method did not successfully divide the

mesh frequently enough to add enough collocation points. One of these situations can

be seen in Fig. 4.9 for α = 0.95. The fact that α = 0.95 converged to a local minimum

is difficult to determine from Fig. 4.9 alone. However, Fig. 4.10 demonstrates that

when α = 0.95 there is a more optimal solution at α = 0.9. Since the trajectories

for α = 0.9 and α = 0.95 are becoming increasingly close to the Moon, the dynamics

in the region are changing rapidly and the EOMs are approaching a singularity as

r2 → 0. Thus, the inclusion of more collocation points would ensure the trajectory

for α = 0.95 does not converge on a local minimum. By increasing the required

number of collocation points in each mesh in GPOPS, the pseudospectral method

successfully converged on a more optimal solution (potentially a globally optimal

solution). Figure 4.12 shows the the old trajectory for α = 0.95, the new trajectory

for α = 0.95, and the trajectory for α = 0.9 for comparison. The old trajectory for

α = 0.95 had a ∆v = 619.05 m/s and a transfer time of t = 13.94 days. The new

trajectory for α = 0.95 had a ∆v = 673.76 m/s and a transfer time of t = 11.84 days.

The new trajectory would be an optimal solution that is on the Pareto Front, which

demonstrates the success of adding more collocation points when the dynamics are

rapidly changing.
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Figure 4.12. Increasing Collocation Points Results in a New Trajectory for α = 0.95

Figure 4.12 demonstrates an effective method of correcting a trajectory that con-

verged on a local minimum. By increasing the number of collocation points in each

mesh interval, the pseudospectral method can successfully solve for an optimal tra-

jectory, even in a region of rapidly changing dynamics and approaching a singularity.
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V. Conclusions and Recommendations

5.1 Summary of Work

The current research evaluated the efficacy of the pseudospectral method utilized

in General Purpose Optimal Control Software (GPOPS) in determining optimal tra-

jectories in the Circular-Restricted Three-Body Problem (CR3BP). The pseudospec-

tral method was evaluated by applying the method to a variety of scenarios.

The first scenario used the pseudospectral method to solve for the heteroclinic tra-

jectory, which is a known minimum-fuel solution. Converging on the known minimum-

fuel solution verified that the pseudospectral method is viable in the CR3BP system.

Next, the research examined if the pseudospectral method could converge without

an accurate initial guess. The minimum-fuel solution was evaluated for “nearby”

periodic orbits using the heteroclinic connection as an initial guess. In the majority of

the cases, the pseuospectral method converged on a beneficial local minimum. Several

trajectories did converge on less beneficial local minima, but these minima could be

clearly picked out by examining the trend (discussed in the research) between the

Jacobi constant of the periodic orbit and the ∆v required for the optimal trajectory.

Finally, this research evaluated a compound objective function by investigating

the balance between the minimum-fuel and minimum-time trajectories. A minimum-

fuel initial guess versus a minimum-time initial guess was evaluated, along with an

evaluation of the original periodic orbit and a “nearby” periodic orbit. A Pareto

Front was generated to compare the trade-off between ∆v and transfer time. The

minimum-time initial guess allowed the pseudospectral method to converge on optimal

solutions that were all on the Pareto Front, whereas the minimum-time initial guess

only had optimal solutions on the Pareto Front for low values of α. This demonstrates

the importance of an initial guess on ensuring the robustness of the pseudospectral
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method. The recommendation is to use the minimum-time initial guess to generate

the first part of the Pareto Front and then use the minimum-fuel initial guess up to

approximately α = 0.4 to generate the remainder of the Pareto Front.

The pseudospectral method successfully converged on optimal solutions when pro-

vided a proper initial guess, such as a minimum-time solution. The pseudospec-

tral method was aided by the hp-adaptive mesh refinement scheme used in GPOPS.

The mesh refinement allowed for an increased number of collocation points to be

placed in locations of rapidly changing dynamics. With insight into the CR3BP,

the pseuodspectral method can be utilized to determine optimal trajectories in the

chaotic CR3BP environment, but accurate initial guesses are required and an effective

mesh-refinement scheme can help the robustness of the pseudospectral method..

5.2 Future Work

Future work for the current research should involve evaluating the pseudospectral

method in further scenarios and comparing it to other methods. Recommended future

work include:

• Provide a more accurate initial guess to the pseudospectral method, such as

through the use of a heuristic method. The pseudospectral method was highly

dependent on the initial guess provided to it, so it may provide better solutions

if accurate initial guesses are provided specific to each scenario.

• Perform the same analysis in a larger variety of scenarios, including different

locations with the CR3BP and with different parameters, such as thrust levels

and specific impulse. Even though the pseudospectral method worked for the

scenario in the current research, the results may not extend to other areas in

the CR3BP. Testing in other scenarios would provide further insights into the

robustness of the pseudospectral method.
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• Expand the problem to analyze impulsive maneuvers. Impulsive maneuvers

would require the use of phases within GPOPS due to the discontinuity in

states at the burn time. This would further evaluate the pseudospectral method

because it would also require that constraints between phases also be met on

top of the optimal control problem within each phase.

• Use another optimization method, such as a hybrid heuristic optimization method

to solving indirectly with a shooting method using Particle Swarm Optimization

on the costates. Another optimization method would allow a comparison to the

robustness of the pseudospectral method. By seeing how another optimization

method compares in a comparable scenario will allow the success and robustness

of the pseudospectral method to be directly evaluated relative to other optimal

control methods.

5.3 Conclusion

As the expansion of space capabilities increases and the need for more resiliency

increases, the CR3BP provides an alternative environment to expand operations. It

is important to understand mission design and methodologies in this environment

before the CR3BP domain becomes a contested arena. The pseudospectral method

used within GPOPS seems to be a beneficial tool for evaluating optimal trajectories

in the CR3BP. However, further analysis needs to be completed to understand the

limitations of the pseudospectral method within the CR3BP, so the pseudospectral

method’s efficacy can be improved within the environment. The results and analysis

developed in this work will need to be expanded to determine an optimal mission

design methodology in the CR3BP environment to ensure future capabilities in this

region.

116



Bibliography

[1] US Department of Defense, “National Security Space Strategy [unclassified

summary],” p. 14, 2011. [Online]. Available: https://www.hsdl.org/?view{&}

did=10828

[2] W. E. Wiesel, Spaceflight Dynamics, 3rd ed. Beavercreek, OH: Aphelion Press,

2010.

[3] E. J. DOEDEL et al., “Elemental Periodic Orbits Associated With the Libration

Points in the Circular Restricted 3-Body Problem,” International Journal of

Bifurcation and Chaos, vol. 17, no. 08, pp. 2625–2677, 2007. [Online]. Available:

http://www.worldscientific.com/doi/abs/10.1142/S0218127407018671

[4] D. J. Grebow, “Generating Periodic Orbits in the Circular Restricted

Three-Body Problem with Applications to Lunar South Pole Coverage,”

Ph.D. dissertation, Purdue University, 2006. [Online]. Available: http:

//scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Generating+

Periodic+Orbits+in+the+Circular+Restricted+Three-BODY+PROBLEM+

WITH+APPLICATIONS+TO+LUNAR+SOUTH+POLE+COVERAGE#0

[5] J. S. Parker et al., “Chaining periodic three-body orbits in the EarthMoon

system,” Acta Astronautica, vol. 67, no. 5, pp. 623–638, 2010. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0094576510001207

[6] J. Hess, “Functional Optimization Lesson 3 : Static Optimization ( 1 / 5 )

Unconstrained Optimality,” 2017.

[7] A. V. Rao, “A Primer on Pseudospectral Methods for Solving Optimal Control

Problems,” 2012.

117

https://www.hsdl.org/?view{&}did=10828
https://www.hsdl.org/?view{&}did=10828
http://www.worldscientific.com/doi/abs/10.1142/S0218127407018671
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Generating+Periodic+Orbits+in+the+Circular+Restricted+Three-BODY+PROBLEM+WITH+APPLICATIONS+TO+LUNAR+SOUTH+POLE+COVERAGE#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Generating+Periodic+Orbits+in+the+Circular+Restricted+Three-BODY+PROBLEM+WITH+APPLICATIONS+TO+LUNAR+SOUTH+POLE+COVERAGE#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Generating+Periodic+Orbits+in+the+Circular+Restricted+Three-BODY+PROBLEM+WITH+APPLICATIONS+TO+LUNAR+SOUTH+POLE+COVERAGE#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Generating+Periodic+Orbits+in+the+Circular+Restricted+Three-BODY+PROBLEM+WITH+APPLICATIONS+TO+LUNAR+SOUTH+POLE+COVERAGE#0
http://www.sciencedirect.com/science/article/pii/S0094576510001207


[8] A. V. Rao et al., “Algorithm 902: GPOPS, A MATLAB Software for Solving

Multiple-Phase Optimal Control Problems Using,” ACM Transactions on Math-

ematical Software, vol. 37, no. 2, pp. 1–39, 2011.

[9] M. Wilmer, “Military Applications of High-Altitude Satellite Orbits in a Multi-

Body Dynamical Environment and Dynamical Systems Theory,” 2016.

[10] J. N. Brick, “MILITARY SPACE MISSION DESIGN AND ANALYSIS

IN A MULTI-BODY ENVIRONMENT: AN INVESTIGATION OF HIGH-

ALTITUDE ORBITS AS ALTERNATIVE TRANSFER PATHS, PARKING

ORBITS FOR RECONSTITUTION, AND UNCONVENTIONAL MISSION

ORBITS,” 2017.

[11] U. S. Joint Chiefs of Staff, “Joint Publication 3-14,” Joint Publication 3-14,

no. May, 2013. [Online]. Available: http://www.jcs.mil/Portals/36/Documents/

Doctrine/pubs/jp3{ }14.pdf

[12] “China confirms satellite downed,” January 2007, [Online; updated 23-January-

2007]. [Online]. Available: http://news.bbc.co.uk/2/hi/asia-pacific/6289519.stm

[13] J. Achenbach, “Satellite collision adds to ’space junk’ problem,”

February 2009, [Online; posted 14-February-2009]. [Online]. Avail-

able: http://www.washingtonpost.com/wp-dyn/content/article/2009/02/13/

AR2009021302071.html

[14] Office of Secretary of Defense, “DOD Annual Report to Congress: Military

and Security Developments Involving the People’s Republic of China 2016,” p.

156, 2016. [Online]. Available: https://www.defense.gov/Portals/1/Documents/

pubs/2016ChinaMilitaryPowerReport.pdf

118

http://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp3{_}14.pdf
http://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp3{_}14.pdf
http://news.bbc.co.uk/2/hi/asia-pacific/6289519.stm
http://www.washingtonpost.com/wp-dyn/content/article/2009/02/13/AR2009021302071.html
http://www.washingtonpost.com/wp-dyn/content/article/2009/02/13/AR2009021302071.html
https://www.defense.gov/Portals/1/Documents/pubs/2016 China Military Power Report.pdf
https://www.defense.gov/Portals/1/Documents/pubs/2016 China Military Power Report.pdf


[15] G. Sousa, “Countries with the most operational satellites in orbit,” April 2017,

[Online; updated 25-April-2017]. [Online]. Available: https://www.worldatlas.

com/articles/countries-with-the-most-operational-satellites-in-orbit.html

[16] Office of the Assistant Secretary of Defense for Homeland Defense and Global

Security, “Space Domain Mission Assurance: A Resilience Taxonomy White

Paper,” Federation of American Scientists, no. September, pp. 1–10, 2015.

[Online]. Available: https://fas.org/man/eprint/resilience.pdf

[17] P. D. Spudis, “The Moon: Point of Entry to Cislunar Space,” Toward a theory

of spacepower: Selected essays, pp. 241–251, 2011.

[18] W. E. Wiesel, Modern Astrodynamics, 2nd ed. Beavercreek, OH: Aphelion

Press, 2010.

[19] ——, Modern Orbit Determination, 2nd ed. Beavercreek, OH: Aphelion Press,

2010.

[20] Victor Szebehely, Theory of Orbits. New York: Academic Press INC, 1967.

[21] C. Zhang et al., “Low-Thrust Minimum-Fuel Optimization in the Circular

Restricted Three-Body Problem,” Journal of Guidance, Control, and

Dynamics, vol. 38, no. 8, pp. 1501–1510, 2015. [Online]. Available:

http://arc.aiaa.org/doi/10.2514/1.G001080

[22] D. L. Kunz, Intermediate Dynamics for Aeronautics and Astronautics. Center-

ville, OH: Headmaster Press, 2015.

[23] F. L. Markley and J. L. Crassidis, Fundamentals of Spacecraft Attitude Determi-

nation and Control. New York, NY: Springer.

119

https://www.worldatlas.com/articles/countries-with-the-most-operational-satellites-in-orbit.html
https://www.worldatlas.com/articles/countries-with-the-most-operational-satellites-in-orbit.html
https://fas.org/man/eprint/resilience.pdf
http://arc.aiaa.org/doi/10.2514/1.G001080


[24] K. Davis, “Coordinate Frame Transformations Interplanetary Mission Design,”

pp. 1–3, 2010. [Online]. Available: http://ccar.colorado.edu/imd/2015/

documents/Rot2Inert.pdf

[25] D. T. Greenwood, Classical Dynamics, dover edit ed. Mineola, NY: Dover, 1997.

[26] K. C. Howell, “Three-dimensional, periodic, ‘halo’ orbits,” Celestial

mechanics, vol. 32, no. 1, pp. 53–71, 1 1984. [Online]. Available:

https://doi.org/10.1007/BF01358403

[27] C. Bezrouk, “Constructing Periodic Orbits,” 2015. [Online]. Available:

http://ccar.colorado.edu/imd/2015/Lectures/BezroukSSDC.pptx

[28] K. Nichols, “The James Webb Space Telescope & Modeling Sun-Earth L2

Halo Orbits.” [Online]. Available: http://ccar.colorado.edu/asen5050/projects/

projects 2015/Students/Nichols Kristin/jwst.htm

[29] J. S. Parker and R. L. Anderson, Low-Energy Lunar Trajectory Design. Hobo-

ken, NJ: John Wiley & Sons, 2014.

[30] N. Truesdale, “Using Invariant Manifolds of the Sun-Earth L2 Point

for Asteroid Mining,” 2012. [Online]. Available: http://ccar.colorado.edu/

asen5050/projects/projects 2012/truesdale/problem.html

[31] W. S. Koon et al., Dynamical systems, the three-body problem and space mission

design, v1.2 ed., 2011, vol. 21. [Online]. Available: http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.367.7054&rep=rep1&type=pdf

[32] J. Hess, “Functional Optimization Lesson 4 : Static Optimization Constrained

Optimality,” 2017.

120

http://ccar.colorado.edu/imd/2015/documents/Rot2Inert.pdf
http://ccar.colorado.edu/imd/2015/documents/Rot2Inert.pdf
https://doi.org/10.1007/BF01358403
http://ccar.colorado.edu/imd/2015/Lectures/BezroukSSDC.pptx
http://ccar.colorado.edu/asen5050/projects/projects_2015/Students/Nichols_Kristin/jwst.htm
http://ccar.colorado.edu/asen5050/projects/projects_2015/Students/Nichols_Kristin/jwst.htm
http://ccar.colorado.edu/asen5050/projects/projects_2012/truesdale/problem.html
http://ccar.colorado.edu/asen5050/projects/projects_2012/truesdale/problem.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.367.7054&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.367.7054&rep=rep1&type=pdf


[33] ——, “Functional Optimization Lesson 8 : Static Optimization Summary

and Dynamic Optimization Nomenclature Dynamic Optimization - Transition,”

2017.

[34] ——, “Karush-Kuhn-Tucker Conditions,” 2017.

[35] A. G. Zurita Jr., “MINIMUM-FUEL TRAJECTORY DESIGN IN MULTIPLE

DYNAMICAL ENVIRONMENTS UTILIZING DIRECT TRANSCRIPTION

METHODS AND PARTICLE SWARM OPTIMIZATION,” 2016.

[36] S. Stanton, “Finite Set Control Transcription for Optimal Control Applications,”

Ph.D. dissertation, 2010.

[37] J. T. Betts, “Survey of Numerical Methods for Trajectory Optimization,”

Journal of Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 193–207, 1998.

[Online]. Available: http://arc.aiaa.org/doi/10.2514/2.4231

[38] “GPOPS-II: Next-Generation Optimal Control Software.” [Online]. Available:

http://www.gpops2.com/

[39] A. V. Rao et al., “GPOPS II: A MATLAB Software for Solving Multiple-

Phase Optimal Control Problems Using hpAdaptive Gaussian Quadrature

Collocation Methods and Sparse Nonlinear Programming,” ACM Transactions

on Mathematical Software, vol. 37, no. 2, pp. 1–39, 2010. [Online]. Available:

http://portal.acm.org/citation.cfm?doid=1731022.1731032

[40] K. C. Howell and M. T. Ozimek, “Low-thrust transfers in the earth-moon

system including applications to libration point orbits,” Advances in the

Astronautical Sciences, vol. 129 PART 2, no. 2, pp. 1455–1481, 2008.

[Online]. Available: https://engineering.purdue.edu/people/kathleen.howell.1/

Publications/Journals/2010{ }JGCD{ }OziHow.pdf

121

http://arc.aiaa.org/doi/10.2514/2.4231
http://www.gpops2.com/
http://portal.acm.org/citation.cfm?doid=1731022.1731032
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Journals/2010{_}JGCD{_}OziHow.pdf
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Journals/2010{_}JGCD{_}OziHow.pdf


[41] J. Stuart et al., “Design of end-to-end trojan asteroid rendezvous

tours incorporating potential scientific value,” Advances in the Astro-

nautical Sciences, vol. 152, no. January 2014, pp. 997–1016, 2014.

[Online]. Available: https://www.researchgate.net/profile/Kathleen{ }Howell/

publication/289393635{ }Design{ }of{ }end-to-end{ }trojan{ }asteroid{ }

rendezvous{ }tours{ }incorporating{ }potential{ }scientific{ }value/links/

574c5dde08ae4cada7ea8c2a.pdf

[42] J. Heiligers et al., “Optimisation of solar sail interplanetary heteroclinic

connections,” 2nd Conference on Dynamics and Control of Space Systems, 2014.

[Online]. Available: https://strathprints.strath.ac.uk/47263/4/Heiligers{ }

J{ }et{ }al{ }Pure{ }Optimisation{ }of{ }solar{ }sail{ }interplanetary{ }

heteroclinic{ }connections{ }Mar{ }2014.pdf

[43] R. E. Pritchett et al., “Low-Thrust Transfer Design Based on Collocation

Techniques: Applications in the Restricted Three-Body Problem,” AAS/AIAA

Astrodynamics Specialist Conference, pp. 1–20, 2017. [Online]. Avail-

able: https://engineering.purdue.edu/people/kathleen.howell.1/Publications/

Conferences/2017{ }AAS{ }PriHowGre.pdf

[44] D. J. Grebow et al., “Design of optimal low-thrust lunar pole-sitter missions,”

Journal of the Astronautical Sciences, vol. 58, no. 1, pp. 55–79, 2011.

[Online]. Available: https://www.researchgate.net/profile/Kathleen{ }Howell/

publication/257288453{ }Design{ }of{ }Optimal{ }Low-Thrust{ }Lunar{ }

Pole-Sitter{ }Missions/links/57703edb08ae0b3a3b7b917e.pdf

[45] ——, “Advanced modeling of optimal low-thrust lunar pole-sitter trajectories,”

Acta Astronautica, vol. 67, no. 7, pp. 991–1001, 2010. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0094576510001542

122

https://www.researchgate.net/profile/Kathleen{_}Howell/publication/289393635{_}Design{_}of{_}end-to-end{_}trojan{_}asteroid{_}rendezvous{_}tours{_}incorporating{_}potential{_}scientific{_}value/links/574c5dde08ae4cada7ea8c2a.pdf
https://www.researchgate.net/profile/Kathleen{_}Howell/publication/289393635{_}Design{_}of{_}end-to-end{_}trojan{_}asteroid{_}rendezvous{_}tours{_}incorporating{_}potential{_}scientific{_}value/links/574c5dde08ae4cada7ea8c2a.pdf
https://www.researchgate.net/profile/Kathleen{_}Howell/publication/289393635{_}Design{_}of{_}end-to-end{_}trojan{_}asteroid{_}rendezvous{_}tours{_}incorporating{_}potential{_}scientific{_}value/links/574c5dde08ae4cada7ea8c2a.pdf
https://www.researchgate.net/profile/Kathleen{_}Howell/publication/289393635{_}Design{_}of{_}end-to-end{_}trojan{_}asteroid{_}rendezvous{_}tours{_}incorporating{_}potential{_}scientific{_}value/links/574c5dde08ae4cada7ea8c2a.pdf
https://strathprints.strath.ac.uk/47263/4/Heiligers{_}J{_}et{_}al{_}Pure{_}Optimisation{_}of{_}solar{_}sail{_}interplanetary{_}heteroclinic{_}connections{_}Mar{_}2014.pdf
https://strathprints.strath.ac.uk/47263/4/Heiligers{_}J{_}et{_}al{_}Pure{_}Optimisation{_}of{_}solar{_}sail{_}interplanetary{_}heteroclinic{_}connections{_}Mar{_}2014.pdf
https://strathprints.strath.ac.uk/47263/4/Heiligers{_}J{_}et{_}al{_}Pure{_}Optimisation{_}of{_}solar{_}sail{_}interplanetary{_}heteroclinic{_}connections{_}Mar{_}2014.pdf
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Conferences/2017{_}AAS{_}PriHowGre.pdf
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Conferences/2017{_}AAS{_}PriHowGre.pdf
https://www.researchgate.net/profile/Kathleen{_}Howell/publication/257288453{_}Design{_}of{_}Optimal{_}Low-Thrust{_}Lunar{_}Pole-Sitter{_}Missions/links/57703edb08ae0b3a3b7b917e.pdf
https://www.researchgate.net/profile/Kathleen{_}Howell/publication/257288453{_}Design{_}of{_}Optimal{_}Low-Thrust{_}Lunar{_}Pole-Sitter{_}Missions/links/57703edb08ae0b3a3b7b917e.pdf
https://www.researchgate.net/profile/Kathleen{_}Howell/publication/257288453{_}Design{_}of{_}Optimal{_}Low-Thrust{_}Lunar{_}Pole-Sitter{_}Missions/links/57703edb08ae0b3a3b7b917e.pdf
http://www.sciencedirect.com/science/article/pii/S0094576510001542


[46] G. Mingotti et al., “Combined optimal low-thrust and stable-manifold trajecto-

ries to the earth-moon halo orbits,” AIP Conference Proceedings, vol. 886, no.

February, pp. 100–112, 2007. [Online]. Available: https://www.researchgate.

net/profile/Francesco{ }Topputo/publication/241390635{ }Combined{ }

Optimal{ }Low-Thrust{ }and{ }Stable-Manifold{ }Trajectories{ }to{ }

the{ }Earth-Moon{ }Halo{ }Orbits/links/555e2db108ae6f4dcc8dd366/

Combined-Optimal-Low-Thrust-and-Stable-Manifold-Trajecto

[47] N. L. Parrish et al., “Low-Thrust Transfers From Distant Retrograde Orbits

To L2 Halo Orbits in the Earth-Moon System,” International Conference on

Astrodynamics Tools and Techniques, no. 2, pp. 1–25, 2016. [Online]. Available:

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160003314.pdf

[48] R. L. Anderson and M. W. Lo, “Role of Invariant Manifolds in Low-Thrust

Trajectory Design,” Journal of Guidance, Control, and Dynamics, vol. 32, no. 6,

pp. 1921–1930, nov 2009. [Online]. Available: https://doi.org/10.2514/1.37516

[49] G. P. Sutton and O. Biblarz, Rocket propulsion elements. John Wiley & Sons,

2016.

[50] J. B. Caillau et al., “Minimum fuel control of the planar circular restricted three-

body problem,” Celestial Mechanics and Dynamical Astronomy, vol. 114, no. 1-2,

pp. 137–150, 2012.

123

https://www.researchgate.net/profile/Francesco{_}Topputo/publication/241390635{_}Combined{_}Optimal{_}Low-Thrust{_}and{_}Stable-Manifold{_}Trajectories{_}to{_}the{_}Earth-Moon{_}Halo{_}Orbits/links/555e2db108ae6f4dcc8dd366/Combined-Optimal-Low-Thrust-and-Stable-Manifold-Trajecto
https://www.researchgate.net/profile/Francesco{_}Topputo/publication/241390635{_}Combined{_}Optimal{_}Low-Thrust{_}and{_}Stable-Manifold{_}Trajectories{_}to{_}the{_}Earth-Moon{_}Halo{_}Orbits/links/555e2db108ae6f4dcc8dd366/Combined-Optimal-Low-Thrust-and-Stable-Manifold-Trajecto
https://www.researchgate.net/profile/Francesco{_}Topputo/publication/241390635{_}Combined{_}Optimal{_}Low-Thrust{_}and{_}Stable-Manifold{_}Trajectories{_}to{_}the{_}Earth-Moon{_}Halo{_}Orbits/links/555e2db108ae6f4dcc8dd366/Combined-Optimal-Low-Thrust-and-Stable-Manifold-Trajecto
https://www.researchgate.net/profile/Francesco{_}Topputo/publication/241390635{_}Combined{_}Optimal{_}Low-Thrust{_}and{_}Stable-Manifold{_}Trajectories{_}to{_}the{_}Earth-Moon{_}Halo{_}Orbits/links/555e2db108ae6f4dcc8dd366/Combined-Optimal-Low-Thrust-and-Stable-Manifold-Trajecto
https://www.researchgate.net/profile/Francesco{_}Topputo/publication/241390635{_}Combined{_}Optimal{_}Low-Thrust{_}and{_}Stable-Manifold{_}Trajectories{_}to{_}the{_}Earth-Moon{_}Halo{_}Orbits/links/555e2db108ae6f4dcc8dd366/Combined-Optimal-Low-Thrust-and-Stable-Manifold-Trajecto
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160003314.pdf
https://doi.org/10.2514/1.37516


REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

22-03-2018 Master’s Thesis September 2016 — March 2018

Optimal Trajectory Generation in a Dynamic Multi-Body Environment
using a Pseudospectral Method

Dahlke, Jacob, A., 2d Lt

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENY-MS-18-M-248

Intentionally Left Blank

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

High-altitude parking orbits could provide resiliency to the military space infrastructure by providing redundancy in key assets, allowing for rapid
reconstitution of underperforming satellites. When analyzing trajectories in a high-altitude regime, two-body models of Keplerian motion become less accurate
since the gravitational effects of other bodies are no longer negligible. To provide a higher fidelity model of the dynamics in a high-altitude regime, a
multiple-body model can be used. In the Earth-Moon system, a spacecraft operating in the high-altitude regime can be modeled with three-body dynamics.
With certain simplifying assumptions, the model is called the circular-restricted three-body problem (CR3BP). The CR3BP provides unique dynamics that
could be exploited to provide beneficial trajectories unavailable and unobservable in a lower-order model. The tradeoff for using this higher-order model is
there is no closed-form analytical solution and the dynamics are chaotic. Methods to search for optimal trajectories within the CR3BP are analyzed to
determine viability in rapid mission development. A direct orthogonal collocation pseudospectral method is utilized to generate fuel- and time- optimal
trajectories within the CR3BP. These results are compared to benchmarks from two-body dynamics, such as Hohmann transfers. Numerical approaches to
finding optimal solutions are highly dependent on initial guesses to converge on candidate optimal solutions. To compound this issue, the chaotic dynamics in
the CR3BP mean small variations in the initial conditions could lead to wildly varying trajectories. The results from the current research provide a
methodology to establish a framework for rapid mission development in a dynamical environment, which may be essential to maintain space superiority and
responsiveness.

Circular-Restricted Three-Body Problem, Dynamical Systems, Optimal Control, Pseudospectral Methods, Heteroclinic
Trajectories

U U U UU 137

Capt Joshuah Hess, Ph.D., AFIT/ENY

(937) 255-3636, x4713; Joshuah.Hess@afit.edu


	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Current Issues
	Benefits of the cr3bp

	Problem Statement
	Thesis Overview

	Background
	Chapter Overview
	N-body Problem
	Perturbation Methods
	Two-Body Problem

	cr3bp
	Nondimensionalization
	Derivation of the cr3bp eom
	Transformation for Barycentric Synodic Reference Frame to eci

	Characteristics of the cr3bp
	Symmetries in the cr3bp
	Jacobi Constant

	Equilibrium Solutions
	Periodic Orbits
	Equations of Variation
	Differential Corrections Applied to the cr3bp

	Invariant Manifolds
	Heteroclinic Connections
	Static Optimization
	Dynamic Optimization Discretization
	Indirect Optimization
	Direct Optimization
	Characteristics of Direct and Indirect Methods
	Pseudospectral Optimization

	gpops
	Literature Review of Relevant Works

	Research Methodology
	Chapter Overview
	Test Plan Overview
	Selection of Parameters
	Equations of Motion
	Initial Guess in gpops
	Continuation Method
	Objective Functions
	2bp Benchmark
	Summary

	Results
	Chapter Overview
	Heteroclinic Trajectory in gpops
	Nearby Periodic Orbits
	Compound Objective Function Initial Guesses
	Compound Objective Functional: Original Periodic Orbit
	Compound Objective Functional: Nearby Periodic Orbit

	Evaluation of Methods used in Current Research
	Evaluation of Inclusion of Mass Loss
	Evaluation of Utilizing Initial Guess
	Evaluation of Pseudospectral Method


	Conclusions and Recommendations
	Summary of Work
	Future Work
	Conclusion

	Bibliography

